Breeding assessment of inbred sunflower lines by a set of economic traits and resistance to Orobanche cumana

Authors

  • V. V. Bilyk Державний біотехнологічний університет, Ukraine
  • D. V. Chuiko State Biotechnological University, Ukraine

DOI:

https://doi.org/10.30835/2413-7510.2025.347588

Keywords:

sunflower, inbred lines, Orobanche cumana, resistance to broomrape, haustoria, productivity, PCA (principal component analysis), breeding value

Abstract

Our purpose was to comprehensively evaluate inbred sunflower lines for morphological and productive traits and resistance to Orobanche cumana Wallr. under laboratory infection and, on this basis, to identify valuable sources for breeding. The study included laboratory screening for resistance to O. cumana (proportions of affected plants and uninfected plants, number of nodules), field assessments of morphometric and productive parameters, correlation analysis, and principal component analysis (PCA) to describe the structure of phenotypic variability. The results of the study revealed significant variability of inbred lines in major economically valuable and adaptive traits. Based on the laboratory assessments, we identified three types of plant response to O. cumana: complete susceptibility, quantitative (partial) resistance, and low-intensity damage, which may indicate polygenic mechanisms of suppression of the parasite's development. No lines with a qualitative (vertical) type of resistance, which is intrinsic to Or genes, were found. Biplot analysis demonstrated spatial differentiation of genotypes and independence of productivity from resistance parameters. Lines SD-038V, SD-029V, and SD-049V were recognized as the most promising sources of quantitative resistance, while lines SD-017V, SD-048V, SD-057V, and SD-02V contained individual resistant plants, indicating the feasibility of intra-line selection. High-yielding genotypes (SD-047V, SD-014V, SD-029V) were identified as potential donors of productivity. Our findings provide a comprehensive characterization of inbred sunflower lines and allowed us to detect sources of valuable breeding traits, in particular quantitative resistance to O. cumana. The results can be used in current breeding programs to create high-yielding and more resistant sunflower hybrids.

References

Louarn J., Boniface M.C., Pouilly N., Velasco L., Pérez-Vich B., Vincourt P., Muños S. Sunflower resistance to broomrape (Orobanche cumana) is controlled by specific QTLs for different parasitism stages. Front. Plant Sci. 2016. Vol. 7. P. 590. https://doi.org/10.1186/s13007-025-01383-8.

Che Y., Zhang C., Xing J., Xi Q., Shao Y., Zhao L., Zuo Y. Machine learning-based identification of resistance genes associated with sunflower broomrape. Plant Methods. 2025. Vol. 21(1). P. 62. https://doi.org/10.1186/s13007-025-01383-8.

Bilyk V.V., Chuiko D.V. Broomrape (Orobanche cumana Wallr.): developmental biology, distribution and selection of sunflower for resistance. Visnyk Sumskoho Natsionalnoho Ahrarnoho Universytetu. 2025. Vol. 59(1). P. 22–30. https://doi.org/10.32782/agrobio.2025.1.4. [in Ukrainian].

Cvejić S., Radanović A., Dedić B., Jocković M., Jocić S., Miladinović D. Genetic and genomic tools in sunflower breeding for broomrape resistance. Genes. 2020. Vol. 11(2). P. 152.

Pubert C., Boniface M.C., Legendre A., Chabaud M., Carrère S., Callot C., Muños S. A cluster of putative resistance genes is associated with a dominant resistance to sunflower broomrape. Theor. Appl. Genet. 2024. Vol. 137(5). P. 103.

Velasco L., Pérez-Vich B., Fernández-Martínez J.M. Research on resistance to sunflower broomrape: an integrated vision. OCL. 2016. Vol. 23(2). P. D203. https://doi.org/10.1051/ocl/2016002.

Calderón-González Á., Pérez-Vich B., Pouilly N., Boniface M.C., Louarn J., Velasco L., Muños S. Association mapping for broomrape resistance in sunflower. Front. Plant Sci. 2023. Vol. 13. P. 1056231. https://doi.org/10.3389/fpls.2022.1056231.

Louarn J., Boniface M.C., Pouilly N., Velasco L., Pérez-Vich B., Vincourt P., Muños S. Sunflower resistance to broomrape (Orobanche cumana) is controlled by specific QTLs for different parasitism stages. Front. Plant Sci. 2016. Vol. 7. P. 590. https://doi.org/10.3389/fpls.2016.00590.

Sisou D., Tadmor Y., Plakhine D., Ziadna H., Hübner S., Eizenberg H. Biological and transcriptomic characterization of pre-haustorial resistance to sunflower broomrape (Orobanche cumana W.) in sunflowers. Plants. 2021. Vol. 10(9). P. 1810. https://doi.org/10.3390/plants10091810.

Fernández-Aparicio M., Del Moral L., Muños S., Velasco L., Pérez-Vich B. Genetic and physiological characterization of sunflower resistance provided by the wild-derived Or Deb2 gene against highly virulent races of Orobanche cumana Wallr. Theor. Appl. Genet. 2022. Vol. 135(2). P. 501–525. https://doi.org/10.1007/s00122-021-03979-9.

Dimitrijevic A., Horn R. Sunflower hybrid breeding: from markers to genomic selection. Front. Plant Sci. 2018. Vol. 8. P. 2238. https://doi.org/10.3389/fpls.2017.02238.

Seiler G.J. Genetic resources of the sunflower crop wild relatives for resistance to sunflower broomrape. Helia. 2019. Vol. 42(71). P. 127–143. https://doi.org/10.1515/helia-2019-0012.

Seiler G.J., Jan C.C. Wild sunflower species as a genetic resource for resistance to sunflower broomrape (Orobanche cumana Wallr.). Helia. 2014. Vol. 37(61). P. 129–139. https://doi.org/10.1515/helia-2014-0013.

Terzić S., Dedić B., Atlagić J., Jocić S., Tančić S. Screening wild sunflower species and F1 interspecific hybrids for resistance to broomrape. Helia. 2010. Vol. 33(53). P. 25–30. https://doi.org/10.2298/hel1053025t.

Popov V.M., Tereniak Y.M., Akinina H.E., Sharypina Y.Yu., Dolhova T.A., Kyrychenko V.V. Detection of the Or5 gene for resistance to sunflower broomrape using a SCAR marker RTS05. Faktory Eksperymentalnoi Evoluysii Orhanizmiv. 2015. Vol. 17. P. 330–332. [in Ukrainian].

Kurylych D.V., Makliak K.M. Inheritance of resistance of common sunflower (Helianthus annuus L.) to broomrape race F. Visnyk Sumskoho Natsionalnoho Ahrarnoho Universytetu. 2024. Vol. 58 (4). P. 57–63. https://doi.org/10.32782/agrobio.2024.4.9. [in Ukrainian].

Brahin O.M., Chuiko D.V. Methods for increasing productivity of sunflower lines and other agricultural crops using growth regulators. Visnyk KhNAU. 2019. (1). P. 107–117. [in Ukrainian].

Burlov V.V. Effectiveness of Or genes in ensuring sunflower resistance to new races of broomrape (Orobanche cumana Wallr.). Selektsiia і Nasinnytstvo. 2010. (98). P. 28–37. https://doi.org/10.30835/2413-7510.2010.70221. [in Ukrainian].

Zhatov O.H., Zhatova H.O. Sources and methods of creating sunflower starting materials. Visnyk Sumskoho Natsionalnoho Ahrarnoho Universytetu. 2012. (9). P. 133–136. [in Ukrainian].

Chuiko D.V. Evaluation of sunflower starting material for breeding-valuable traits. Selektsiia i Nasinnystvo. 2022. (121). P. 6–14. https://doi.org/10.30835/2413-7510.2022.260986

Volkodav V.V. Methods of state trials of agricultural crop varieties. Kyiv: Derzhavna Komisiia Yurainy po Vyprobuvannuu ta Okhoroni Sortiv Roslyn, 2000. 100 с. [in Ukrainian].

Ermantraut E.R., Hoptsii T.I., Kryvoruchenko R.V., Turchynova N.P., Chuiko D.V., Lymanska S.V., Hudym O.V., Kravchenko A.I. Methods of breeding experiments (in plant production). Kharkiv: Biotekhknyha, 2025. 348 p. [in Ukrainian].

Hammer Ø., Harper D.A. Past: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001. Vol. 4(1). P. 1.

Sipio W.D., Sahar W.A., Abro T.F., Keerio J.M., Sipio N., Unar I.H., Kakar B.K. The correlation and regression analysis in different genotypes of sunflower (Helianthus annuus L.). Pak. J. Biotechnol. 2024. Vol. 21(1). P. 172–177. https://doi.org/10.34016/pjbt.2024.21.01.893.

Lakshman S.S., Chakraborty N.R., Debnath S., Kant A. Genetic variability, character association and divergence studies in sunflower (Helianthus annuus L.) for improvement in oil yield. Afr. J. Biol. Sci. 2021. Vol. 3(1). P. 129–145. https://doi.org/10.33472/AFJBS.3.1.2021.129-145.

Delen Y., Palali-Delen S., Xu G., Neji M., Yang J., Dweikat I. Dissecting the genetic architecture of morphological traits in sunflower (Helianthus annuus L.). Genes. 2024. Vol. 15(7). P. 950. https://doi.org/10.3390/genes15070950.

Chuiko D.V., Kyrychenko V.V., Bilyk V.V. Agrobiological evaluation of sunflower hybrids in Eastern Ukraine. Selektsiia i Nasinnystvo. 2025. (127). P. 56–67. https://doi.org/10.30835/2413-7510.2025.333766.

Special breeding and seed production of field crops: guidebook/ ed. by V. V. Kyrychenko. NAAS. Kharkiv: IR im. V. Ya. Yurieva, 2010. 462 p. [in Ukrainian].

Downloads

Published

2025-12-25

Issue

Section

ORIGINAL ARTICLES