Antinociceptive effects of Treculia africana decne (african breadfruit) seed lectin in Wistar rats
DOI:
https://doi.org/10.15587/2519-4852.2022.270312Keywords:
hemagglutinin, agglutinin, analgesic activity, pain-relieving lectin, inflammation, MoraceaeAbstract
The aim: The use of synthetic compounds to treat many diseases must be strictly controlled due to their potential health hazards. Hence, there is a need to search for natural products to serve as safe alternatives to synthetic products. This study investigated the antinociceptive effects and anti-inflammatory activities of Treculia africana seed lectin.
Materials and methods: Lectins were purified from Treculia africana seeds using ion exchange and size-exclusion chromatography. The antinociceptive activity of the lectin was assessed in Wistar rats using abdominal writhing and paw-licking tests induced by acetic acid and formalin, respectively. Anti-inflammatory activity was assessed using carrageenan-induced paw oedema.
Results: Treculia africana seed lectins at 10 mg/kg (p.o.) produced sedation, reduced ambulation, reduced response to touch, analgesia, and decreased defecation in experimental animals. Administration of Treculia africana seed lectin (1 mg/kg and 10 mg/kg) in experimental animals significantly reduced (P < 0.05) acetic acid-induced muscular writhing in a dose-dependent manner with 23.88 and 36.80 per cent inhibition, respectively. Both early and late phases of formalin-induced nociception were significantly inhibited (P < 0.001) by the lectin at all doses (0.1, 1.0 and 10.0 mg/kg), comparably with the standard drug, diclofenac sodium. At 10 mg/kg, T. africana lectin caused a 69.12 % and 65.55 % reduction in both early and late phases of formalin-induced paw licking. Treculia africana lectin also significantly brought about a reduction (P < 0.05) in inflammation induced by sub-plantar injection of carrageenan as measured by a decrease in paw swollenness.
Conclusion: The study showed that Treculia africana lectin possesses antinociceptive and anti-inflammatory properties and can potentially be employed therapeutics to ameliorate pain and inflammation
References
- Pohleven, J., Brzin, J., Vrabec, L., Leonardi, A., Čokl, A., Štrukelj, B. et al. (2011). Basidiomycete Clitocybe nebularis is rich in lectins with insecticidal activities. Applied Microbiology and Biotechnology, 91 (4), 1141–1148. doi: https://doi.org/10.1007/s00253-011-3236-0
- Kehinde, A. A., Oludele, O. O., Adenike, K., Mosudi, B. S. (2016). Anti-insect potential of a lectin from the tuber, Dioscorea mangenotiana towards Eldana saccharina (Lepidoptera: Pyralidae). Journal of Agricultural Biotechnology and Sustainable Development, 8 (3), 16–26. doi: https://doi.org/10.5897/jabsd2015.0249
- Campos, J. K. L., Araújo, C. S. F., Araújo, T. F. S., Santos, A. F. S., Teixeira, J. A., Lima, V. L. M., Coelho, L. C. B. B. (2016). Anti-inflammatory and antinociceptive activities of Bauhinia monandra leaf lectin. Biochimie Open, 2, 62–68. doi: https://doi.org/10.1016/j.biopen.2016.03.001
- Gondim, A. C. S., Roberta da Silva, S., Mathys, L., Noppen, S., Liekens, S., Holanda Sampaio, A. et al. (2019). Potent antiviral activity of carbohydrate-specific algal and leguminous lectins from the Brazilian biodiversity. MedChemComm, 10 (3), 390–398. doi: https://doi.org/10.1039/c8md00508g
- Liao, W.-R., Lin, J.-Y., Shieh, W.-Y., Jeng, W.-L., Huang, R. (2003). Antibiotic activity of lectins from marine algae against marine vibrios. Journal of Industrial Microbiology and Biotechnology, 30 (7), 433–439. doi: https://doi.org/10.1007/s10295-003-0068-7
- Gautam, A. K., Gupta, N., Narvekar, D. T., Bhadkariya, R., Bhagyawant, S. S. (2018). Characterization of chickpea (Cicer arietinum L.) lectin for biological activity. Physiology and Molecular Biology of Plants, 24 (3), 389–397. doi: https://doi.org/10.1007/s12298-018-0508-5
- de Medeiros, M. L. S., de Moura, M. C., Napoleão, T. H., Paiva, P. M. G., Coelho, L. C. B. B., Bezerra, A. C. D. S., da Silva, M. D. C. (2018). Nematicidal activity of a water soluble lectin from seeds of Moringa oleifera. International Journal of Biological Macromolecules, 108, 782–789. doi: https://doi.org/10.1016/j.ijbiomac.2017.10.167
- Batista, K. L. R., Silva, C. R., Santos, V. F., Silva, R. C., Roma, R. R., Santos, A. L. E. et al. (2018). Structural analysis and anthelmintic activity of Canavalia brasiliensis lectin reveal molecular correlation between the carbohydrate recognition domain and glycans of Haemonchus contortus. Molecular and Biochemical Parasitology, 225, 67–72. doi: https://doi.org/10.1016/j.molbiopara.2018.09.002
- Singh, R. S., Walia, A. K., Kennedy, J. F. (2019). Purification and characterization of a heterodimeric mycelial lectin from Penicillium proteolyticum with potent mitogenic activity. International Journal of Biological Macromolecules, 128, 124–131. doi: https://doi.org/10.1016/j.ijbiomac.2019.01.103
- Coelho, L. C. B. B., Silva, P. M. dos S., Lima, V. L. de M., Pontual, E. V., Paiva, P. M. G. et al. (2017). Lectins, Interconnecting Proteins with Biotechnological/Pharmacological and Therapeutic Applications. Evidence-Based Complementary and Alternative Medicine, 2017, 1–22. doi: https://doi.org/10.1155/2017/1594074
- White, F. A., Bhangoo, S. K., Miller, R. J. (2005). Chemokines: Integrators of Pain and Inflammation. Nature Reviews Drug Discovery, 4 (10), 834–844. doi: https://doi.org/10.1038/nrd1852
- Omoigui, S. (2007). The biochemical origin of pain: The origin of all pain is inflammation and the inflammatory response. Part 2 of 3 – Inflammatory profile of pain syndromes. Medical Hypotheses, 69 (6), 1169–1178. doi: https://doi.org/10.1016/j.mehy.2007.06.033
- Abdulkhaleq, L. A., Assi, M. A., Abdullah, R., Zamri-Saad, M., Taufiq-Yap, Y. H., Hezmee, M. N. M. (2018). The crucial roles of inflammatory mediators in inflammation: A review. Veterinary World, 11 (5), 627–635. doi: https://doi.org/10.14202/vetworld.2018.627-635
- Santos, A. L. E., Júnior, C. P. S., Neto, R. N. M., Santos, Maria. H. C., Santos, V. F., Rocha, B. A. M. et al. (2020). Machaerium acutifolium lectin inhibits inflammatory responses through cytokine modulation. Process Biochemistry, 97, 149–157. doi: https://doi.org/10.1016/j.procbio.2020.06.012
- Zhu, F., Du, B., Xu, B. (2017). Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review. Critical Reviews in Food Science and Nutrition, 58 (8), 1260–1270. doi: https://doi.org/10.1080/10408398.2016.1251390
- Osukoya, O., Nwoye-Ossy, M., Olayide, I., Ojo, O., Adewale, O., Kuku, A. (2020). Antioxidant activities of peptide hydrolysates obtained from the seeds ofTreculia africanaDecne (African breadfruit). Preparative Biochemistry & Biotechnology, 50 (5), 504–510. doi: https://doi.org/10.1080/10826068.2019.1709980
- Adeniran, O. A., Kuku, A., Obuotor, M. E., Agboola, F. K., Famurewa, A. J., Osasan, S. (2009). Purification, characterization and toxicity of a mannose-binding lectin from the seeds ofTreculia africanaplant. Toxicological & Environmental Chemistry, 91 (7), 1361–1374. doi: https://doi.org/10.1080/02772240902732357
- Ajayi, O. S., Aderogba, M. A., Obuotor, E. M., Majinda, R. R. T. (2017). Antioxidant activities of the extracts and isolated compounds from Treculia africana (Decne) leaf. Nigerian Journal of Natural Products and Medicine, 21, 32–38.
- Chukwuma, P. C., Nwabueze, T. U., Ogbonnaya, M., Onumadu, K. S., Irondi, A. E. (2018). Effect of traditional processing methods on the proximate composition and carbohydrate components of African breadfruits (Treculia africana) seeds. Research Journal of Food Science and Quality Control, 4 (2), 1–8.
- Adeniran, O. A. (2015). Purification and Physicochemical Characterization of Lectin from the Seeds of Treculia Africana Decne. Ile-Ife.
- Shimokawa, M., Nsimba-Lubaki, S. M., Hayashi, N., Minami, Y., Yagi, F., Hiemori, K. et al. (2014). Two jacalin-related lectins from seeds of the African breadfruit (Treculia africana L.). Bioscience, Biotechnology, and Biochemistry, 78 (12), 2036–2044. doi: https://doi.org/10.1080/09168451.2014.948376
- Aderibigbe, A., Agboola, O. (2010). Studies of behavioural and analgesic properties of Treculia africana in mice. International Journal of Biological and Chemical Sciences, 4 (2), 338–346. doi: https://doi.org/10.4314/ijbcs.v4i2.58120
- Olson, B. J. S. C., Markwell, J. (2007). Assays for Determination of Protein Concentration. Current Protocols in Protein Science, 48 (1). doi: https://doi.org/10.1002/0471140864.ps0304s48
- Fonsêca, D. V., Salgado, P. R. R., de Carvalho, F. L., Salvadori, M. G. S. S., Penha, A. R. S., Leite, F. C. et al. (2015). Nerolidol exhibits antinociceptive and anti-inflammatory activity: involvement of the GABAergic system and proinflammatory cytokines. Fundamental & Clinical Pharmacology, 30 (1), 14–22. doi: https://doi.org/10.1111/fcp.12166
- Ajayi, A. M., Badaki, V. B., Ariyo, O. O., Ben-Azu, B., Asejeje, F. O., Adedapo, A. D. A. (2020). Chrysophyllum albidum fruit peel attenuates nociceptive pain and inflammatory response in rodents by inhibition of pro-inflammatory cytokines and COX-2 expression through suppression of NF-κB activation. Nutrition Research, 77, 73–84. doi: https://doi.org/10.1016/j.nutres.2020.03.004
- Hunskaar, S., Hole, K. (1987). The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain, 30 (1), 103–114. doi: https://doi.org/10.1016/0304-3959(87)90088-1
- Oladokun, B. O., Omisore, O. N., Osukoya, O. A., Kuku, A. (2019). Anti-nociceptive and anti-inflammatory activities of Tetracarpidium conophorum seed lectin. Scientific African, 3, e00073. doi: https://doi.org/10.1016/j.sciaf.2019.e00073
- Robertson, S. A. (2002). What is pain? Journal of the American Veterinary Medical Association, 221 (2), 202–205. doi: https://doi.org/10.2460/javma.2002.221.202
- Wirth, J. H., Hudgins, J. C., Paice, J. A. (2005). Use of Herbal Therapies to Relieve Pain: A Review of Efficacy and Adverse Effects. Pain Management Nursing, 6 (4), 145–167. doi: https://doi.org/10.1016/j.pmn.2005.08.003
- Wu, M., Cai, J., Yu, Y., Hu, S., Wang, Y., Wu, M. (2021). Therapeutic Agents for the Treatment of Temporomandibular Joint Disorders: Progress and Perspective. Frontiers in Pharmacology, 11. doi: https://doi.org/10.3389/fphar.2020.596099
- Ramos, D. de B. M., Araújo, M. T. de M. F., Araújo, T. C. de L., Silva, Y. A., dos Santos, A. C. L. A., e Silva, M. G. et al. (2020). Antinociceptive activity of Schinus terebinthifolia leaf lectin (SteLL) in sarcoma 180-bearing mice. Journal of Ethnopharmacology, 259, 112952. doi: https://doi.org/10.1016/j.jep.2020.112952
- Yaksh, T. L., Woller, S. A., Ramachandran, R., Sorkin, L. S. (2015). The search for novel analgesics: targets and mechanisms. F1000Prime Reports, 7. doi: https://doi.org/10.12703/p7-56
- Aoki, M., Tsuji, M., Takeda, H., Harada, Y., Nohara, J., Matsumiya, T., Chiba, H. (2006). Antidepressants enhance the antinociceptive effects of carbamazepine in the acetic acid-induced writhing test in mice. European Journal of Pharmacology, 550 (1-3), 78–83. doi: https://doi.org/10.1016/j.ejphar.2006.08.049
- Dannerman, P. J. K. D., Sally, K., Wixson, B., White, W. J., John, G. (Eds.) (1977). Monitoring of Analgesia en. Anesthesia and Analgesia in Laboratory Animals, 83–99.
- Liu, Z., Gao, W., Zhang, J., Hu, J. (2012). Antinociceptive and smooth muscle relaxant activity of Croton tiglium L seed: an in-vitro and in-vivo study. Iranian Journal of Pharmaceutical Research, 11 (2), 611–620.
- Bari, A. U., Santiago, M. Q., Osterne, V. J. S., Pinto-Junior, V. R., Pereira, L. P., Silva-Filho, J. C. et al. (2016). Lectins from Parkia biglobosa and Parkia platycephala: A comparative study of structure and biological effects. International Journal of Biological Macromolecules, 92, 194–201. doi: https://doi.org/10.1016/j.ijbiomac.2016.07.032
- Holanda, F., Coelho-de-Sousa, A., Assreuy, A., Leal-Cardoso, J., Pires, A., do Nascimento, K., Teixeira, C. et al. (2009). Antinociceptive Activity of Lectins from Diocleinae Seeds on Acetic Acid-Induced Writhing Test in Mice. Protein & Peptide Letters, 16 (9), 1088–1092. doi: https://doi.org/10.2174/092986609789055304
- Shamsi Meymandi, M., Keyhanfar, F. (2013). Assessment of the antinociceptive effects of pregabalin alone or in combination with morphine during acetic acid-induced writhing in mice. Pharmacology Biochemistry and Behavior, 110, 249–254. doi: https://doi.org/10.1016/j.pbb.2013.07.021
- McNamara, C. R., Mandel-Brehm, J., Bautista, D. M., Siemens, J., Deranian, K. L., Zhao, M. et al. (2007). TRPA1 mediates formalin-induced pain. Proceedings of the National Academy of Sciences, 104 (33), 13525–13530. doi: https://doi.org/10.1073/pnas.0705924104
- Park, S.-H., Sim, Y.-B., Lee, J.-K., Kim, S.-M., Kang, Y.-J., Jung, J.-S., Suh, H.-W. (2011). The analgesic effects and mechanisms of orally administered eugenol. Archives of Pharmacal Research, 34 (3), 501–507. doi: https://doi.org/10.1007/s12272-011-0320-z
- Leite, J. F. M., Assreuy, A. M. S., Mota, M. R. L., Bringel, P. H. de S. F., e Lacerda, R. R., Gomes, V. de M. et al. (2012). Antinociceptive and Anti-inflammatory Effects of a Lectin-Like Substance from Clitoria fairchildiana R. Howard Seeds. Molecules, 17 (3), 3277–3290. doi: https://doi.org/10.3390/molecules17033277
- Fontenelle, T. P. C., Lima, G. C., Mesquita, J. X., Lopes, J. L. de S., de Brito, T. V., Vieira Júnior, F. das C. et al. (2018). Lectin obtained from the red seaweed Bryothamnion triquetrum: Secondary structure and anti-inflammatory activity in mice. International Journal of Biological Macromolecules, 112, 1122–1130. doi: https://doi.org/10.1016/j.ijbiomac.2018.02.058
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Joseph Obabiolorunkosi Awe, Olukemi Adetutu Osukoya, Olusola Bolaji Adewale, Tajudeen Olabisi Obafemi, Olakunle Bamikole Afolabi, Adenike Kuku
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.