Design, synthesis, molecular docking and anticonvulsant evaluation of 6-methyl-2-arylaminopyrimidin-4(3H)-one

Authors

DOI:

https://doi.org/10.15587/2519-4852.2020.200809

Keywords:

synthesis, pyrimidine, docking, GABA, PTZ, anticonvulsant activity

Abstract

The aim. Synthesis of 2-aminoaryl derivatives of 6-methyl-pyrimidin-4(3H)-one, target-based virtual screening followed by the study of anticonvulsant activity and the establishment of structure-activity patterns.

Materials and methods. The standard methods of organic synthesis were used, synthesized compounds structure was proved with elemental analysis, 1H NMR spectroscopy, chromatography-mass spectrometry. Molecular docking was performed using AutoDockTools-1.5.6 and AutoDock Vina. Anticonvulsant activity was studied in а model of pentylenetetrazole seizures in rats.

Results. Methylation of 6-methyl-2-thiopyrimidin-4 (3H)-one with dimethyl sulfate or methyl iodide gave a 2-thiomethyl derivative. By heating the latter with aromatic amines at 140 ºC, the target 2-aminoaryl derivatives of 6-methyl-pyrimidin-4 (3H)-one were obtained. The prospect of screening the synthesized compounds on the pentylenetetrazole model by seizure and the selection of the objects was performed by the results of binding energy and conformation evaluation at the active sites of GABA receptor and GABA-AT. The test substances did not show anticonvulsant activity: only 2 compounds tended to exhibit activity according to the criterion of integral protective index - a decrease in mortality compared to control, preventing mortality in 100 and 80 % of animals, respectively. Comparison with previous activity results of 2-thioacetanilide derivatives allowed to prove the positive role of thioacetamide and phenyl fragments, as well as 4-Br, 4-MeO radicals in the manifestation of anticonvulsant activity and increase of lethality in the presence of Cl atoms.

Conclusions. The synthesis was performed and construction of the 2-aminoaryl derivatives of 6-methyl-pyrimidin-4(3H)-one was proved. PTZ seizures model in rats did not show anticonvulsant activity. However, the obtained results allowed us to identify a number of structural fragments that influence anticonvulsant activity. A positive correlation between in vivo studies on PTZ seizures model and docking results in active sites of GABAA and GABAAT enzyme was determined

Author Biographies

Hanna Severina, National University of Pharmacy Pushkinska str., 53, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Pharmaceutical Chemistry

Natalya Voloshchuk, National Pirogov Memorial Medical University Pirogova str., 56, Vinnitsya, Ukraine, 21018

MD, Professor, Head of Department

Department of Pharmacology

Narzullo Saidov, Tajik National University Rudaki str., 17, Dushanbe, Tajikistan, 734025

Doctor of Pharmaceutical Sciences, Professor

Department of Pharmaceutical Chemistry

Victoriya Georgiyants, National University of Pharmacy Pushkinska str., 53, Kharkiv, Ukraine, 61002

Doctor of Pharmaceutical Sciences, Professor, Head of Department

Department of Pharmaceutical Chemistry

References

  1. Gesche, J., Christensen, J., Hjalgrim, H., Rubboli, G., Beier, C. P. (2020). Epidemiology and outcome of idiopathic generalized epilepsy in adults. European Journal of Neurology, 27 (4), 676–684. doi: http://doi.org/10.1111/ene.14142
  2. Yuen, A. W. C., Keezer, M. R., Sander, J. W. (2018). Epilepsy is a neurological and a systemic disorder. Epilepsy & Behavior, 78, 57–61. doi: http://doi.org/10.1016/j.yebeh.2017.10.010
  3. Keezer, M. R., Sisodiya, S. M., Sander, J. W. (2016). Comorbidities of epilepsy: current concepts and future perspectives. The Lancet Neurology, 2 (15), 106–15. doi: http://doi.org/10.1016/s1474-4422(15)00225-2
  4. Kubova, H., Lukasiuk, K., Pitkanen, A. (2012). New insight on the mechanisms of epileptogenesis in the developing brain. Pediatric Epilepsy Surgery. Vienna: Springer, 3–44. doi: http://doi.org/10.1007/978-3-7091-1360-8_1
  5. Pitkanen, A., Lukasiuk, K., Dudek, F. E., Staley, K. J. (2015). Epileptogenesis. Cold Spring Harbor perspectives in medicine, 5 (10). doi: http://doi.org/10.1101/cshperspect.a022822
  6. Vossler, D. G., Weingarten, M., Gidal, B. E. (2018) Summary of antiepileptic drugs available in the United States of America: working toward a world without epilepsy. Epilepsy currents, 18 (4), 1–26. doi: http://doi.org/10.5698/1535-7597.18.4s1.1
  7. Bialer, M., Cross, H., Hedrich, U. B. S., Lagae, L., Lerche, H., Loddenkemper, T. (2019). Novel treatment approaches and pediatric research networks in status epilepticus. Epilepsy & Behavior, 101, 106564. doi: http://doi.org/10.1016/j.yebeh.2019.106564
  8. Golyala, A., Kwan, P. (2017). Drug development for refractory epilepsy: The past 25 years and beyond. Seizure, 44, 147–156. doi: http://doi.org/10.1016/j.seizure.2016.11.022
  9. Gaitatzis, A., Sander, J. W. (2013). The Long-Term Safety of Antiepileptic Drugs. CNS Drugs, 27 (6), 435–455. doi: http://doi.org/10.1007/s40263-013-0063-0
  10. Bialer, M., White, H. S. (2010). Key factors in the discovery and development of new antiepileptic drugs. Nature Reviews Drug Discovery, 9 (1), 68–82. doi: http://doi.org/10.1038/nrd2997
  11. Hubert, P., Parain, D., Vallée, L. (2009). Management of convulsive status epilepticus in infants and children. Revue neurologique, 165 (4), 390–397. doi: http://doi.org/10.1016/j.neurol.2008.11.009
  12. Zhang, Q., Yu, Y., Lu, Y., Yue, H. (2019). Systematic review and meta-analysis of propofol versus barbiturates for controlling refractory status epilepticus. BMC Neurology, 19, 1–22. doi: http://doi.org/10.1186/s12883-019-1281-y
  13. Mairinger, S., Bankstahl, J. P., Kuntner, C., Römermann, K., Bankstahl, M., Wanek, T. et. al. (2012). The antiepileptic drug mephobarbital is not transported by P-glycoprotein or multidrug resistance protein 1 at the blood–brain barrier: A positron emission tomography study. Epilepsy Research, 100 (1-2), 93–103. doi: http://doi.org/10.1016/j.eplepsyres.2012.01.012
  14. Tahar, A. H., Chuang, R., Steeves, T., Jog, M., Lang, A., Grimes, D. (2013). Efficacy and safety of T2000 in older patients with essential tremor. Parkinsonism & Related Disorders, 19 (4), 485–486. doi: http://doi.org/10.1016/j.parkreldis.2012.11.014
  15. Severina, H., Skupa, O., Khairulin, A., Voloschuk, N., Georgiyants, V. (2019). Synthesis and anticonvulsant activity of 6-methyl-2-thioxo-2,3-dihydropyrimidin-4(1H)-one acetamides. Journal of Applied Pharmaceutical Science, 9 (2), 12–19. doi: http://doi.org/10.7324/japs.2019.90202
  16. El Kayal, W. M., Shtrygol, S. Y., Zalevskiy, S. V., Shark, A. A., Tsyvunin, V. V., Kovalenko, S. M. et. al. (2019). Synthesis, in vivo and in silico anticonvulsant activity studies of new derivatives of 2-(2,4-dioxo-1,4-dihydroquinazolin-3(2H)-yl)acetamide. European journal of medicinal chemistry, 180, 134–142. doi: http://doi.org/10.1016/j.ejmech.2019.06.085
  17. Severina, H., Skupa, O. O., Voloshchuk, N. I., Suleiman, M. M., Georgiyants, V. A. (2019). Synthesis and anticonvulsant activity of 6-methyl-2-((2-oxo-2-arylethyl)thio)pyrimidin-4(3 H)-one derivatives and products of their cyclization. Pharmacia, 66 (3), 141–146. doi: http://doi.org/10.3897/pharmacia.66.e38137
  18. Kotaiah, S., Ramadevi, B., Naidu, A., Dubey, P. K. (2013). A Green and Facile Synthesis of 6-Methyl-2-(alkylthio)pyrimidin-4(3H)-one. Asian Journal of Chemistry, 25 (17), 9869–9871. doi: http://doi.org/10.14233/ajchem.2013.15532
  19. Abdel-Fattai, A. S. M., Negm, A. M., Gaafar, F. E. M. (1992). Reactions with 6-methyl-2-thiouracil synthesis of dipyrimidino[2,1-B:1′,2′-C]thiazine. A new ring system. Phosphorus, Sulfur, and Silicon and the Related Elements, 72 (1-4), 145–156. doi: http://doi.org/10.1080/10426509208031548
  20. Protein Data Bank. Available at: http://www.rcsb.org/pdb/home/home.do
  21. Trott, O., Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31 (2), 455–461. doi: http://doi.org/10.1002/jcc.21334
  22. Deacon, R. M. J. (2006). Housing, husbandry and handling of rodents for behavioral experiments. Nature Protocols, 1 (2), 936–946. doi: http://doi.org/10.1038/nprot.2006.120
  23. Stables, J. P., Kupferberg, H. J.; Avanzini, G., Tanganelli, P., Avoli, M. (Eds.) (1997). The NIH anticonvulsant drug development (ADD) program: preclinical anticonvulsant screening project. Molecular and cellular targets for antiepileptic drugs. London: John Libbey & Company Ltd, 4–17.
  24. Gerald, M. C., Riffee, W. H. (1973). Acute and chronic effects of d- and 1-amphetamine on seizure susceptibility in mice. European Journal of Pharmacology, 21 (3), 323–330. doi: http://doi.org/10.1016/0014-2999(73)90134-9
  25. Barmaki, M., Valiyeva, G., Maharramovm, A. A., Allaverdiyev, M. M. (2013). Synthesis of 2,3-Dihydro-6-methyl-2-thiopyrimidin-4(1H)-one (6-Methylthiouracil) Derivatives and Their Reactions. Journal of Chemistry, 2013, 1–6. doi: http://doi.org/10.1155/2013/176213
  26. Miller, P. S., Aricescu, A. R. (2014). Crystal structure of a human GABAA receptor. Nature, 512 (7514), 270–275. doi: http://doi.org/10.1038/nature13293
  27. Storici, P., Capitani, G., Baise, D. D., Moser, M., John, R. A., Jansonius, J. N., Schirmer, T. (1999). Crystal structure of GABA aminotransferase, a target for antiepileptic drug therapy. Biochemistry, 38 (27), 8628–8634. doi: http://doi.org/10.1021/bi990478j
  28. Löscher, W. (2017). Animal models of seizures and epilepsy: past, present, and future role for the discovery of antiseizure drugs. Neurochemical research, 42 (7), 1873–1888. doi: http://doi.org/10.1007/s11064-017-2222-z

Downloads

Published

2020-04-28

How to Cite

Severina, H., Voloshchuk, N., Saidov, N., & Georgiyants, V. (2020). Design, synthesis, molecular docking and anticonvulsant evaluation of 6-methyl-2-arylaminopyrimidin-4(3H)-one. ScienceRise: Pharmaceutical Science, (2 (24), 9–17. https://doi.org/10.15587/2519-4852.2020.200809

Issue

Section

Pharmaceutical Science