Pharmacognostic analysis of Salvia hispanica L. seeds
DOI:
https://doi.org/10.15587/2519-4852.2021.230290Keywords:
Salvia hispanica L., seeds, histochemical analysis, phytochemical analysis, mucus, fatty oils, fatty acids, hydroxycinnamic acids, water-soluble polysaccharides, flavonoidsAbstract
The aim. The aim of this work was to conduct a microscopic and phytochemical study of the seeds of chia (Salvia hispanica L.).
Materials and methods. Chia seeds were examined macroscopically and microscopically. To study the qualitative composition of the main groups of biologically active substances, histochemical, microchemical and chemical reactions were used. Hydroxycinnamic acids were identified by paper chromatography. To obtain a lipophilic extract, a Soxhlet apparatus and an exhaustive chloroform extraction method were used. The study of the quantitative content of fatty acids was carried out by gas chromatography. The content of polysaccharides in the raw material was determined by the gravimetric method. According to the SPhU method, the raw material swelling index was determined.
Results. The main macro- and microscopic features of chia seeds have been established. Histochemical reactions, microchemical reactions made it possible to establish the presence of mucus and fatty oils in chia seeds. With the help of chemical reactions, the presence of flavonoids in the raw material was established. The quantitative content of fatty oils is 24.0±1.2 %. The content of water-soluble polysaccharides in the whole raw material was 4.01±0.07 %, in the crushed raw material - 5.04 ± 0.05 %. As a result of determining the swelling index, it was found that this indicator for the whole chia seeds was 20, and for the crushed ones – 17. The content of hydroxycinnamic acids in the chia seeds was 1.07±0.03 %. 9 fatty acids have been identified, among which linoleic acid predominates in terms of content.
Conclusions. The presence and quantitative content of mucus, fatty oils, water-soluble polysaccharides, flavonoids, hydroxycinnamic acids, fatty acids was confirmed in the seeds of chia (Salvia hispanica L.). The obtained data can be used to develop regulatory documentation for chia seeds in order to use this raw material in pharmacy and medicine
References
- Sofer, S., Stark, A. H., Madar, Z. (2015). Nutrition Targeting by Food Timing: Time-Related Dietary Approaches to Combat Obesity and Metabolic Syndrome. Advances in Nutrition, 6 (2), 214–223. doi: http://doi.org/10.3945/an.114.007518
- Ayerza, R., Coates, W., Lauria, M. (2002). Chia seed (Salvia hispanica L.) as an omega-3 fatty acid source for broilers: influence on fatty acid composition, cholesterol and fat content of white and dark meats, growth performance, and sensory characteristics. Poultry Science, 81 (6), 826–837. doi: http://doi.org/10.1093/ps/81.6.826
- Ullah, R., Nadeem, M., Khalique, A., Imran, M., Mehmood, S., Javid, A., Hussain, J. (2015). Nutritional and therapeutic perspectives of Chia (Salvia hispanica L.): a review. Journal of Food Science and Technology, 53 (4), 1750–1758. doi: http://doi.org/10.1007/s13197-015-1967-0
- Ayaz, A., Akyol, A., Inan-Eroglu, E., Kabasakal Cetin, A., Samur, G., Akbiyik, F. (2017). Chia seed (Salvia Hispanica L.) added yogurt reduces short-term food intake and increases satiety: randomised controlled trial. Nutrition Research and Practice, 11 (5), 412–418. doi: http://doi.org/10.4162/nrp.2017.11.5.412
- Attalla, N. R., El-Hussieny, E. A. (2017). Characteristics of Nutraceutical Yoghurt Mousse Fortified with Chia Seeds. International Journal of Environment, Agriculture and Biotechnology, 2 (4), 2033–2046. doi: http://doi.org/10.22161/ijeab/2.4.61
- Derewiaka, D., Stepnowska, N., Bryś, J., Ziarno, M., Ciecierska, M., Kowalska, J. (2019). Chia seed oil as an additive to yogurt. Grasas y Aceites, 70 (2), 302. doi: http://doi.org/10.3989/gya.0705182
- COMMISSION DECISIONof 13 October 2009 authorising the placing on the market of Chia seed (Salvia hispanica) as novel food ingredient under Regulation (EC) No 258/97 of the European Parliament and of the Council (2009). Official Journal of the European Union. Available at: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:294:0014:0015:EN:PDF
- Da Silva, B. P., Anunciação, P. C., Matyelka, J. C. da S., Della Lucia, C. M., Martino, H. S. D., Pinheiro-Sant’Ana, H. M. (2017). Chemical composition of Brazilian chia seeds grown in different places. Food Chemistry, 221, 1709–1716. doi: http://doi.org/10.1016/j.foodchem.2016.10.115
- Application for the authorization of chia seed from Salvia hispanica L. for consumption as a food and as an ingredient in additional food groups (2011). Available at: https://acnfp.food.gov.uk/sites/default/files/mnt/drupal_data/sources/files/multimedia/pdfs/applicdosschiacompany.pdf
- De Souza Ferreira, C., de Sousa Fomes, L. de F., da Silva, G. E. S., Rosa, G. (2015). Effect of chia seed (Salvia hispanica L.) consumption on cardiovascular risk factors in humans: a systematic review. Nutricion hospitalaria, 32, 1909–1918. doi: http://doi.org/10.3305/nh.2015.32.5.9394
- Jeong, S. K., Park, H. J., Park, B. D., Kim, I.-H. (2010). Effectiveness of Topical Chia Seed Oil on Pruritus of End-stage Renal Disease (ESRD) Patients and Healthy Volunteers. Annals of Dermatology, 22 (2), 143–148. doi: http://doi.org/10.5021/ad.2010.22.2.143
- Nieman, D. C., Gillitt, N., Jin, F., Henson, D. A., Kennerly, K., Shanely, R. A. et. al. (2012). Chia Seed Supplementation and Disease Risk Factors in Overweight Women: A Metabolomics Investigation. The Journal of Alternative and Complementary Medicine, 18 (7), 700–708. doi: http://doi.org/10.1089/acm.2011.0443
- Park B. D., Jung S. G., Park H. J. (2010). Pat. No. 2010005799 Korea. Skin external composition containing chia seed oil.
- Marineli, R. da S., Lenquiste, S. A., Moraes, É. A., Maróstica, M. R. (2015). Antioxidant potential of dietary chia seed and oil ( Salvia hispanica L.) in diet-induced obese rats. Food Research International, 76, 666–674. doi: http://doi.org/10.1016/j.foodres.2015.07.039
- Mohd Ali, N., Yeap, S. K., Ho, W. Y., Beh, B. K., Tan, S. W., Tan, S. G. (2012). The Promising Future of Chia,Salvia hispanicaL. Journal of Biomedicine and Biotechnology, 2012, 1–9. doi: http://doi.org/10.1155/2012/171956
- Fortino, M. A., Oliva, M. E., Rodriguez, S., Lombardo, Y. B., Chicco, A. (2017). Could post-weaning dietary chia seed mitigate the development of dyslipidemia, liver steatosis and altered glucose homeostasis in offspring exposed to a sucrose-rich diet from utero to adulthood? Prostaglandins, Leukotrienes and Essential Fatty Acids, 116, 19–26. doi: http://doi.org/10.1016/j.plefa.2016.11.003
- Kulczyński, B., Kobus-Cisowska, J., Taczanowski, M., Kmiecik, D., & Gramza-Michałowska, A. (2019). The Chemical Composition and Nutritional Value of Chia Seeds – Current State of Knowledge. Nutrients, 11 (6), 1242. doi: http://doi.org/10.3390/nu11061242
- Villanueva-Bermejo, D., Calvo, M. V., Castro-Gómez, P., Fornari, T., Fontecha, J. (2019). Production of omega 3-rich oils from underutilized chia seeds. Comparison between supercritical fluid and pressurized liquid extraction methods. Food Research International, 115, 400–407. doi: http://doi.org/10.1016/j.foodres.2018.10.085
- Derzhavna Farmakopeia Ukrainy. Vol. 1. (2015). Kharkiv: Derzhavne pidpryiemstvo «Ukrainskyi naukovyi farmakopeinyi tsentr yakosti likarskykh zasobiv», 1128.
- Souza, D. M. F. D., Sá, R. D., Araújo, E. L., Randau, K. P. (2018). Anatomical, phytochemical and histochemical study of Solidago chilensis Meyen. Anais Da Academia Brasileira de Ciências, 90 (2 suppl 1), 2107–2120. doi: http://doi.org/10.1590/0001-3765201720160280
- Koshevoi, O. N. (2011). Amino-acid and monosaccharide compositions of Salvia officinalis leaves. Chemistry of Natural Compounds, 47 (3), 492–493. doi: http://doi.org/10.1007/s10600-011-9976-3
- Koshovyi O, Raal A, Kovaleva A, Myha M, Ilina T, Borodina N, Komissarenko A. (2020). The phytochemical and chemotaxonomic study of Salvia spp. growing in Ukraine. Journal of Applied Biology & Biotechnology, 8 (3), 29–36. doi: http://doi.org/10.7324/jabb.2020.80306
- Karpiuk, U. V., Abudayeh, Z. H. M., Kyslychenko, V. S., Yemelianova, O. I. (2017). Isolation and Identification of some Primary Metabolites, Micro- and Macroelements of Aesculus hippocastanum L. Seeds. International Journal of Pharmacognosy and Phytochemical Research, 9 (1), 108–113. doi: http://doi.org/10.25258/ijpapr.v9i1.8049
- Karpiuk, U. V., Omelchenko, Z. I., Kislichenko, V. S. (2009). Сhromatographic detection and identification of lipophylic compounds of Glycine and Setaria genus. Herba polonica, 55 (1), 43–52.
- Derzhavna Farmakopeia Ukrainy. Vol. 3 (2014). Kharkiv: Derzhavne pidpryiemstvo «Ukrainskyi naukovyi farmakopeinyi tsentr yakosti likarskykh zasobiv», 732.
- Starchenko, G., Hrytsyk, A., Raal, A., Koshovyi, O. (2020). Phytochemical Profile and Pharmacological Activities of Water and Hydroethanolic Dry Extracts of Calluna vulgaris (L.) Hull. Herb. Plants, 9 (6), 751. doi: http://doi.org/10.3390/plants9060751
- Ikumi, P., Mburu, M., Njoroge, D. (2019). Chia (Salvia hispanica L.) – A Potential Crop for Food and Nutrition Security in Africa. Journal of Food Research, 8 (6), 104–118. doi: http://doi.org/10.5539/jfr.v8n6p104
- Liu, J., Willför, S., Xu, C. (2015). A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. Bioactive Carbohydrates and Dietary Fibre, 5 (1), 31–61. doi: http://doi.org/10.1016/j.bcdf.2014.12.001
- Sova, M., Saso, L. (2020). Natural Sources, Pharmacokinetics, Biological Activities and Health Benefits of Hydroxycinnamic Acids and Their Metabolites. Nutrients, 12 (8), 2190. doi: http://doi.org/10.3390/nu12082190
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Anastasiia Sytryn , Iryna Cholak , Oksana Yemelianova , Uliana Karpiuk
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.