Influence of physicochemical properties and structure of mixed solvents propylene glycol – macrogol 400 on their in vitro release
DOI:
https://doi.org/10.15587/2519-4852.2023.274468Keywords:
propylene glycol, macrogol 400, solvent, density, viscosity, activation parameters of viscous flow, in vitro releaseAbstract
Aim. To study the density and dynamic viscosity of the mixed solvents propylene glycol (PG) – macrogol 400 (M400), to calculate their excess values and excess activation parameters of viscous flow, to evaluate the features of the structure of the mixed solvents and its influence on the in vitro release of PG and M400.
Materials and methods. The mixed solvents PG - M400 were studied over the entire concentration range at temperatures from 293.15 to 313.15 K. The density and dynamic viscosity were determined, and the excess density, excess dynamic viscosity, activation parameters of viscous flow, and excess activation parameters of viscous flow were calculated. The in vitro release of PG and M400 from the mixed solvents was studied using vertical diffusion cells. The content of PG and M400 in the receptor medium was determined by gas chromatography using validated analytical procedures. The release rate, cumulative content, percentage of released PG or M400, coefficients of correlation and coefficients of determination were calculated.
Results. The isotherms of excess density and excess dynamic viscosity of the mixed solvents PG-M400 pass through a maximum. The enthalpy makes the main contribution to the free activation energy of the viscous flow. The excess free energy is positive and has small values; the values of the excess entropy and excess enthalpy are negative, and the isotherms have the minimum at PG concentrations of 70‑75mol %. The release parameters of M400 are greater in binary mixtures where the M400 structure predominates. At PG content of ~75 mol %, the release parameters for PG and M400 are identical. With the increase in PG content above 75 mol %, when the PG structure predominates in the system, the release parameters of PG increase dramatically, and the release parameters of M400 decrease sharply.
Conclusions. The structure of the binary system PG – M400 depends on its composition. Based on the isotherms of excess activation of viscous flow, it is possible to differentiate the areas where the structure of PG or the structure of M400 dominates, or the mixed structure of the binary solvent prevails. The in vitro release parameters for PG and M400 depend on the structure of the mixed solvents. The greatest difference in the release parameters of PG and M400 was observed in the area where the structure of PG dominates
References
- Sheskey, P. J., Hancock, B. C., Moss, G. P., Goldfarb, D. J. (Eds.) (2020). Handbook of Pharmaceutical Excipients. London: Pharm. Press, 1296.
- Buckingham, R. (Ed.) (2020). Martindale: The Complete Drug Reference. London: Pharmaceutical Press, 4912.
- Alkilani, A., McCrudden, M. T., Donnelly, R. (2015). Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the Stratum Corneum. Pharmaceutics, 7 (4), 438–470. doi: https://doi.org/10.3390/pharmaceutics7040438
- Bezuhlaia, E. P., Melnykova, E. N., Zhemerova, E. H., Liapunov, A. N., Zynchenko, Y. A. (2016). Efficacy of antimicrobial preservation of certain hydrophilic non-aqueous solvents in aqueous solutions and gels. Pharmacom, 1, 51–59.
- Lyapunov, N., Bezuglaya, E., Liapunova, A., Zinchenko, I., Liapunov, O., Lysokobylka, O., Stolper, Y. (2022). Effect of the composition of emulsifiers and the dispersion medium on the properties of bases for semi-solid preparations. ScienceRise: Pharmaceutical Science, 5 (39), 29–45. doi: https://doi.org/10.15587/2519-4852.2022.266001
- Bezuglaya, E., Ivashchenko, H., Lyapunov, N., Zinchenko, I., Liapunova, A., Stolper, Y. et al. (2021). Study of factors affecting the in vitro release of diclofenac sodium from hypromelose-based gels. ScienceRise: Pharmaceutical Science, 5 (33), 12–31. doi: https://doi.org/10.15587/2519-4852.2021.243040
- Bezuglaya, E. P., Lyapunov, N. A., Krasnopyorova, A. P., Yukhno, G. D., Cherny, A. V. (2009). Viscosity and the thermodynamics of the viscous flow of the system “Water – N- Methylpyrrolidone”. Visnyk Kharkivskoho natsionalnoho universytetu. Khimiia, 870 (17 (40)), 199–207.
- Liapunov, A. N. (2015). Issledovanie rastvorimosti meloksikama i meloksikama trometamola v nekotorykh nevodnykh i smeshannykh rastvoriteliakh. Farmakom, 2, 41–48.
- dos Santos, L. J., Espinoza-Velasquez, L. A., Coutinho, J. A. P., & Monteiro, S. (2020). Theoretically consistent calculation of viscous activation parameters through the Eyring equation and their interpretation. Fluid Phase Equilibria, 522, 112774. doi: https://doi.org/10.1016/j.fluid.2020.112774
- Hoga, H. E., Torres, R. B., Volpe, P. L. O. (2018). Thermodynamics properties of binary mixtures of aqueous solutions of glycols at several temperatures and atmospheric pressure. The Journal of Chemical Thermodynamics, 122, 38–64. doi: https://doi.org/10.1016/j.jct.2018.02.022
- Emi Hoga, H., Belchior Torres, R., Vieira Olivieri, G., Luiz Onófrio Volpe, P. (2023). Measurement and correlation of thermodynamics properties of aqueous solutions containing glycols. Part II: Excess molar enthalpy. The Journal of Chemical Thermodynamics, 177, 106946. doi: https://doi.org/10.1016/j.jct.2022.106946
- Fakhri, Z., Azad, M. T. (2020). An experimental and molecular dynamics simulation study of the structural and thermodynamic properties of the binary mixtures of morpholine and propylene glycol. Journal of Molecular Liquids, 302, 112584. doi: https://doi.org/10.1016/j.molliq.2020.112584
- Kaur, K., Juglan, K. C., Kumar, H. (2018). Acoustical and volumetric investigation of polyethylene glycol 400 and polyethylene glycol 4000 in aqueous solutions of glycerol at different temperatures. The Journal of Chemical Thermodynamics, 127, 8–16. doi: https://doi.org/10.1016/j.jct.2018.07.015
- Verma, V., Awasthi, A., Awasthi, A. (2020). Physicochemical investigations of polyethylene glycols with N, N dimethylacetamide. The Journal of Chemical Thermodynamics, 141, 105948. doi: https://doi.org/10.1016/j.jct.2019.105948
- Chaudhary, N., Nain, A. K. (2021). Correlation between intermolecular interactions and excess properties of polyethylene glycol 400 + benzyl methacrylate binary mixtures at temperatures from 293.15 to 318.15 K. Journal of Molecular Liquids, 340, 116866. doi: https://doi.org/10.1016/j.molliq.2021.116866
- Upmanyu, A., Dhiman, M., Singh, D. P., Kumar, H. (2021). Thermo-viscous investigations of molecular interactions for the binary mixtures of polyethylene glycol-400 and polyethylene glycol-600 with dimethyl sulfoxide and water at different temperatures. Journal of Molecular Liquids, 334, 115939. doi: https://doi.org/10.1016/j.molliq.2021.115939
- Castro, G. T., Loyola, J. M., Gasull, E. I., Almandoz, M. C. (2022). Solubility of meloxicam in ethylene glycol-water and propylene glycol-ethanol mixtures: Experimental determination and thermodynamic analysis. Journal of Molecular Liquids, 354, 118863. doi: https://doi.org/10.1016/j.molliq.2022.118863
- Rahimpour, E., Martinez, F., Hemmati, S., Ramezani, A. M., Jouyban, A. (2022). Study of Mesalazine Solubility in Ternary Mixtures of Ethanol, Propylene Glycol, and Water at Various Temperatures. Journal of Pharmaceutical Sciences, 111 (10), 2758–2764. doi: https://doi.org/10.1016/j.xphs.2022.07.018
- Assis, G. P., Derenzo, S., Bernardo, A. (2022). Solid-liquid equilibrium of nicotinamide in water-ethanol and water-propylene glycol mixtures. Journal of Molecular Liquids, 345, 117799. doi: https://doi.org/10.1016/j.molliq.2021.117799
- Rezaei, H., Rahimpour, E., Zhao, H., Martinez, F., Jouyban, A. (2021). Determination and modeling of caffeine solubility in N-methyl-2-pyrrolidone + propylene glycol mixtures. Journal of Molecular Liquids, 343, 117613. doi: https://doi.org/10.1016/j.molliq.2021.117613
- Lee, S.-K., Ha, E.-S., Park, H., Jeong, J.-S., Ryu, H.-J., Pyo, Y.-J. et al. (2021). Measurement and correlation of solubility of lifitegrast in four mixtures of (diethylene glycol monoethyl ether, glycerol, PEG 400, and propylene glycol + water) from 288.15 K to 308.15 K. Journal of Molecular Liquids, 340, 117181. doi: https://doi.org/10.1016/j.molliq.2021.117181
- Sayad, T., Poturcu, K., Moradi, M., Rahimpour, E., Zhao, H., Jouyban, A. (2021). Solubility study of carvedilol in the aqueous mixtures of a choline chloride/propylene glycol deep eutectic solvent. Journal of Molecular Liquids, 342, 117537. doi: https://doi.org/10.1016/j.molliq.2021.117537
- Assis, G. P., Garcia, R. H. L., Derenzo, S., Bernardo, A. (2021). Solid-liquid equilibrium of paracetamol in water-ethanol and water-propylene glycol mixtures. Journal of Molecular Liquids, 323, 114617. doi: https://doi.org/10.1016/j.molliq.2020.114617
- Jouyban-Gharamaleki, V., Jouyban, A., Zhao, H., Martinez, F., Rahimpour, E. (2021). Solubility study of ketoconazole in propylene glycol and ethanol mixtures at different temperatures: A laser monitoring method. Journal of Molecular Liquids, 337, 116060. doi: https://doi.org/10.1016/j.molliq.2021.116060
- Romdhani, A., Martínez, F., Almanza, O. A., Jouyban, A., Acree, W. E. (2020). Solubility of acetaminophen in (ethanol + propylene glycol + water) mixtures: Measurement, correlation, thermodynamics, and volumetric contribution at saturation. Journal of Molecular Liquids, 318, 114065. doi: https://doi.org/10.1016/j.molliq.2020.114065
- Shen, Y., Farajtabar, A., Xu, J., Wang, J., Xia, Y., Zhao, H., & Xu, R. (2019). Thermodynamic solubility modeling, solvent effect and preferential solvation of curcumin in aqueous co-solvent mixtures of ethanol, n-propanol, isopropanol and propylene glycol. The Journal of Chemical Thermodynamics, 131, 410–419. doi: https://doi.org/10.1016/j.jct.2018.11.022
- Fathi-Azarjbayjani, A., Mabhoot, A., Martínez, F., Jouyban, A. (2016). Modeling, solubility, and thermodynamic aspects of sodium phenytoin in propylene glycol–water mixtures. Journal of Molecular Liquids, 219, 68–73. doi: https://doi.org/10.1016/j.molliq.2016.02.089
- Delgado, D. R., Rodríguez, G. A., Holguín, A. R., Martínez, F., Jouyban, A. (2013). Solubility of sulfapyridine in propylene glycol+water mixtures and correlation with the Jouyban–Acree model. Fluid Phase Equilibria, 341, 86–95. doi: https://doi.org/10.1016/j.fluid.2012.12.017
- Jiménez, D. M., Cárdenas, Z. J., Martínez, F. (2016). Solubility and solution thermodynamics of sulfadiazine in polyethylene glycol 400 + water mixtures. Journal of Molecular Liquids, 216, 239–245. doi: https://doi.org/10.1016/j.molliq.2015.12.114
- Abbasi, M., Martinez, F., Jouyban, A. (2014). Prediction of deferiprone solubility in aqueous mixtures of ethylene glycol, propylene glycol and polyethylene glycol 400 at various temperatures. Journal of Molecular Liquids, 197, 171–175. doi: https://doi.org/10.1016/j.molliq.2014.05.004
- Behboudi, E., Soleymani, J., Martinez, F., Jouyban, A. (2022). Solubility of amlodipine besylate in binary mixtures of polyethylene glycol 400 + water at various temperatures: Measurement and modelling. Journal of Molecular Liquids, 347, 118394. doi: https://doi.org/10.1016/j.molliq.2021.118394
- Jouyban, A., Martinez, F., Panahi-Azar, V. (2014). Solubility of fluphenazine decanoate in aqueous mixtures of polyethylene glycols 400 and 600 at various temperatures. Fluid Phase Equilibria, 368, 58–64. doi: https://doi.org/10.1016/j.fluid.2014.01.044
- Derzhavnyi reiestr likarskykh zasobiv Ukrainy. Available at: http://www.drlz.kiev.ua/
- Pandey, S. K., Goyal, V. K., Nalge, P., Are, P., Vincent, S., Nirogi, R. (2017). Assessment of toxicity and tolerability of a combination vehicle; 5 % Pharmasolve, 45 % Propylene glycol and 50 % Polyethylene glycol 400 in rats following repeated intravenous administration. Regulatory Toxicology and Pharmacology, 91, 103–108. doi: https://doi.org/10.1016/j.yrtph.2017.10.016
- Bezugla, O. P., Lyapunov, M. O., Zinchenko, I. O., Lisokobilka, O. A., Liapunova, A. M. (2022). Modeling of processes of solvent diffusion from ointment bases using in vitro experiments. Functional materials, 29 (4), 553–558. doi: https://doi.org/10.15407/fm29.04.553
- The United States Pharmacopoeia, 41 – NF 36 (2018). The United States Pharmacopoeial Convention. Rockville. Available at: https://www.worldcat.org/title/united-states-pharmacopeia-2018-usp-41-the-national-formulary-nf-36/oclc/1013752699
- Bezuglaya, E., Zinchenko, I., Lyapunov, N., Vlasenko, H., Musatov, V. (2021). Substantiation of an approach to determination of ketoprofen macrogol 400 esters. ScienceRise: Pharmaceutical Science, 3 (31), 51–63. doi: https://doi.org/10.15587/2519-4852.2021.235980
- The European Pharmacopoeia (2022). EDQM. Strasbourg: Council of Europe. Available at: http://pheur.edqm.eu/subhome/11-0
- Derzhavna Farmakopeia Ukrainy. Vol 1 (2015). Kharkiv: Derzhavne pidpryiemstvo «Ukrainskyi naukovyi farmakopeinyi tsentr yakosti likarskykh zasobiv», 1128.
- Ilić, T., Pantelić, I., Savić, S. (2021). The Implications of Regulatory Framework for Topical Semisolid Drug Products: From Critical Quality and Performance Attributes towards Establishing Bioequivalence. Pharmaceutics, 13 (5), 710. doi: https://doi.org/10.3390/pharmaceutics13050710
- Tiffner, K. I., Kanfer, I., Augustin, T., Raml, R., Raney, S. G., Sinner, F. (2018). A comprehensive approach to qualify and validate the essential parameters of an in vitro release test (IVRT) method for acyclovir cream, 5 %. International Journal of Pharmaceutics, 535 (1-2), 217–227. doi: https://doi.org/10.1016/j.ijpharm.2017.09.049
- Fialkov, Iu. Ia., Zhitomirskii, A. N., Tarasenko, Iu. A. (1973). Fizicheskaia khimiia nevodnykh rastvorov. Leningrad: Khimiia, 376.
- Krasnoperova, A. P., Iukhno, G. D., Piliaeva, T. S. (1987). Viazkost i termodinamika aktivatcii viazkogo techeniia sistemy voda – polietilenglikol-400. Vestnik Kharkovskogo gosudarstvennogo universiteta, 300, 19–21.
- Lipatov, Iu. S., Shilov, V. V., Gomza, Iu. P., Krugliak, N. E. (1982). Rentgenograficheskie metody issledovaniia polimerov. Kyiv: Naukova dumka, 296.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Elena Bezuglaya, Alla Krasnopyorova, Anna Liapunova, Igor Zinchenko, Nikolay Lyapunov, Oksana Sytnik
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.