Influence of physicochemical properties and structure of mixed solvents propylene glycol – macrogol 400 on their in vitro release

Authors

DOI:

https://doi.org/10.15587/2519-4852.2023.274468

Keywords:

propylene glycol, macrogol 400, solvent, density, viscosity, activation parameters of viscous flow, in vitro release

Abstract

Aim. To study the density and dynamic viscosity of the mixed solvents propylene glycol (PG) – macrogol 400 (M400), to calculate their excess values and excess activation parameters of viscous flow, to evaluate the features of the structure of the mixed solvents and its influence on the in vitro release of PG and M400.

Materials and methods. The mixed solvents PG - M400 were studied over the entire concentration range at temperatures from 293.15 to 313.15 K. The density and dynamic viscosity were determined, and the excess density, excess dynamic viscosity, activation parameters of viscous flow, and excess activation parameters of viscous flow were calculated. The in vitro release of PG and M400 from the mixed solvents was studied using vertical diffusion cells. The content of PG and M400 in the receptor medium was determined by gas chromatography using validated analytical procedures. The release rate, cumulative content, percentage of released PG or M400, coefficients of correlation and coefficients of determination were calculated.

Results. The isotherms of excess density and excess dynamic viscosity of the mixed solvents PG-M400 pass through a maximum. The enthalpy makes the main contribution to the free activation energy of the viscous flow. The excess free energy is positive and has small values; the values of the excess entropy and excess enthalpy are negative, and the isotherms have the minimum at PG concentrations of 70‑75mol %. The release parameters of M400 are greater in binary mixtures where the M400 structure predominates. At PG content of ~75 mol %, the release parameters for PG and M400 are identical. With the increase in PG content above 75 mol %, when the PG structure predominates in the system, the release parameters of PG increase dramatically, and the release parameters of M400 decrease sharply.

Conclusions. The structure of the binary system PG – M400 depends on its composition. Based on the isotherms of excess activation of viscous flow, it is possible to differentiate the areas where the structure of PG or the structure of M400 dominates, or the mixed structure of the binary solvent prevails. The in vitro release parameters for PG and M400 depend on the structure of the mixed solvents. The greatest difference in the release parameters of PG and M400 was observed in the area where the structure of PG dominates

Author Biographies

Elena Bezuglaya, State Scientific Institution «Institute for Single Crystals» of National Academy of Sciences of Ukraine

PhD, Senior Researcher, Head of Laboratory

Laboratory of Technology and Analysis of Medicinal Products

Alla Krasnopyorova, V. N. Karazin Kharkiv National University

PhD, Senior Researcher, Head of Department

Department of Radiochemistry and Radioecology

Anna Liapunova, State Scientific Institution «Institute for Single Crystals» of National Academy of Sciences of Ukraine

PhD, Researcher

Laboratory of Technology and Analysis of Medicinal Products

Igor Zinchenko, State Scientific Institution «Institute for Single Crystals» of National Academy of Sciences of Ukraine

PhD, Junior Researcher

Laboratory of Technology and Analysis of Medicinal Products

Nikolay Lyapunov, State Scientific Institution «Institute for Single Crystals» of National Academy of Sciences of Ukraine

Doctor of Pharmaceutical Sciences, Professor, Leading Researcher

Laboratory of Technology and Analysis of Medicinal Products

Oksana Sytnik, Branch of Ukrainian Scientific Research Institute of Natural Gases of Joint Stock Company "Ukrgazvydobuvannya"

PhD, Head of Laboratory

Laboratory of Ecological Research

References

  1. Sheskey, P. J., Hancock, B. C., Moss, G. P., Goldfarb, D. J. (Eds.) (2020). Handbook of Pharmaceutical Excipients. London: Pharm. Press, 1296.
  2. Buckingham, R. (Ed.) (2020). Martindale: The Complete Drug Reference. London: Pharmaceutical Press, 4912.
  3. Alkilani, A., McCrudden, M. T., Donnelly, R. (2015). Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the Stratum Corneum. Pharmaceutics, 7 (4), 438–470. doi: https://doi.org/10.3390/pharmaceutics7040438
  4. Bezuhlaia, E. P., Melnykova, E. N., Zhemerova, E. H., Liapunov, A. N., Zynchenko, Y. A. (2016). Efficacy of antimicrobial preservation of certain hydrophilic non-aqueous solvents in aqueous solutions and gels. Pharmacom, 1, 51–59.
  5. Lyapunov, N., Bezuglaya, E., Liapunova, A., Zinchenko, I., Liapunov, O., Lysokobylka, O., Stolper, Y. (2022). Effect of the composition of emulsifiers and the dispersion medium on the properties of bases for semi-solid preparations. ScienceRise: Pharmaceutical Science, 5 (39), 29–45. doi: https://doi.org/10.15587/2519-4852.2022.266001
  6. Bezuglaya, E., Ivashchenko, H., Lyapunov, N., Zinchenko, I., Liapunova, A., Stolper, Y. et al. (2021). Study of factors affecting the in vitro release of diclofenac sodium from hypromelose-based gels. ScienceRise: Pharmaceutical Science, 5 (33), 12–31. doi: https://doi.org/10.15587/2519-4852.2021.243040
  7. Bezuglaya, E. P., Lyapunov, N. A., Krasnopyorova, A. P., Yukhno, G. D., Cherny, A. V. (2009). Viscosity and the thermodynamics of the viscous flow of the system “Water – N- Methylpyrrolidone”. Visnyk Kharkivskoho natsionalnoho universytetu. Khimiia, 870 (17 (40)), 199–207.
  8. Liapunov, A. N. (2015). Issledovanie rastvorimosti meloksikama i meloksikama trometamola v nekotorykh nevodnykh i smeshannykh rastvoriteliakh. Farmakom, 2, 41–48.
  9. dos Santos, L. J., Espinoza-Velasquez, L. A., Coutinho, J. A. P., & Monteiro, S. (2020). Theoretically consistent calculation of viscous activation parameters through the Eyring equation and their interpretation. Fluid Phase Equilibria, 522, 112774. doi: https://doi.org/10.1016/j.fluid.2020.112774
  10. Hoga, H. E., Torres, R. B., Volpe, P. L. O. (2018). Thermodynamics properties of binary mixtures of aqueous solutions of glycols at several temperatures and atmospheric pressure. The Journal of Chemical Thermodynamics, 122, 38–64. doi: https://doi.org/10.1016/j.jct.2018.02.022
  11. Emi Hoga, H., Belchior Torres, R., Vieira Olivieri, G., Luiz Onófrio Volpe, P. (2023). Measurement and correlation of thermodynamics properties of aqueous solutions containing glycols. Part II: Excess molar enthalpy. The Journal of Chemical Thermodynamics, 177, 106946. doi: https://doi.org/10.1016/j.jct.2022.106946
  12. Fakhri, Z., Azad, M. T. (2020). An experimental and molecular dynamics simulation study of the structural and thermodynamic properties of the binary mixtures of morpholine and propylene glycol. Journal of Molecular Liquids, 302, 112584. doi: https://doi.org/10.1016/j.molliq.2020.112584
  13. Kaur, K., Juglan, K. C., Kumar, H. (2018). Acoustical and volumetric investigation of polyethylene glycol 400 and polyethylene glycol 4000 in aqueous solutions of glycerol at different temperatures. The Journal of Chemical Thermodynamics, 127, 8–16. doi: https://doi.org/10.1016/j.jct.2018.07.015
  14. Verma, V., Awasthi, A., Awasthi, A. (2020). Physicochemical investigations of polyethylene glycols with N, N dimethylacetamide. The Journal of Chemical Thermodynamics, 141, 105948. doi: https://doi.org/10.1016/j.jct.2019.105948
  15. Chaudhary, N., Nain, A. K. (2021). Correlation between intermolecular interactions and excess properties of polyethylene glycol 400 + benzyl methacrylate binary mixtures at temperatures from 293.15 to 318.15 K. Journal of Molecular Liquids, 340, 116866. doi: https://doi.org/10.1016/j.molliq.2021.116866
  16. Upmanyu, A., Dhiman, M., Singh, D. P., Kumar, H. (2021). Thermo-viscous investigations of molecular interactions for the binary mixtures of polyethylene glycol-400 and polyethylene glycol-600 with dimethyl sulfoxide and water at different temperatures. Journal of Molecular Liquids, 334, 115939. doi: https://doi.org/10.1016/j.molliq.2021.115939
  17. Castro, G. T., Loyola, J. M., Gasull, E. I., Almandoz, M. C. (2022). Solubility of meloxicam in ethylene glycol-water and propylene glycol-ethanol mixtures: Experimental determination and thermodynamic analysis. Journal of Molecular Liquids, 354, 118863. doi: https://doi.org/10.1016/j.molliq.2022.118863
  18. Rahimpour, E., Martinez, F., Hemmati, S., Ramezani, A. M., Jouyban, A. (2022). Study of Mesalazine Solubility in Ternary Mixtures of Ethanol, Propylene Glycol, and Water at Various Temperatures. Journal of Pharmaceutical Sciences, 111 (10), 2758–2764. doi: https://doi.org/10.1016/j.xphs.2022.07.018
  19. Assis, G. P., Derenzo, S., Bernardo, A. (2022). Solid-liquid equilibrium of nicotinamide in water-ethanol and water-propylene glycol mixtures. Journal of Molecular Liquids, 345, 117799. doi: https://doi.org/10.1016/j.molliq.2021.117799
  20. Rezaei, H., Rahimpour, E., Zhao, H., Martinez, F., Jouyban, A. (2021). Determination and modeling of caffeine solubility in N-methyl-2-pyrrolidone + propylene glycol mixtures. Journal of Molecular Liquids, 343, 117613. doi: https://doi.org/10.1016/j.molliq.2021.117613
  21. Lee, S.-K., Ha, E.-S., Park, H., Jeong, J.-S., Ryu, H.-J., Pyo, Y.-J. et al. (2021). Measurement and correlation of solubility of lifitegrast in four mixtures of (diethylene glycol monoethyl ether, glycerol, PEG 400, and propylene glycol + water) from 288.15 K to 308.15 K. Journal of Molecular Liquids, 340, 117181. doi: https://doi.org/10.1016/j.molliq.2021.117181
  22. Sayad, T., Poturcu, K., Moradi, M., Rahimpour, E., Zhao, H., Jouyban, A. (2021). Solubility study of carvedilol in the aqueous mixtures of a choline chloride/propylene glycol deep eutectic solvent. Journal of Molecular Liquids, 342, 117537. doi: https://doi.org/10.1016/j.molliq.2021.117537
  23. Assis, G. P., Garcia, R. H. L., Derenzo, S., Bernardo, A. (2021). Solid-liquid equilibrium of paracetamol in water-ethanol and water-propylene glycol mixtures. Journal of Molecular Liquids, 323, 114617. doi: https://doi.org/10.1016/j.molliq.2020.114617
  24. Jouyban-Gharamaleki, V., Jouyban, A., Zhao, H., Martinez, F., Rahimpour, E. (2021). Solubility study of ketoconazole in propylene glycol and ethanol mixtures at different temperatures: A laser monitoring method. Journal of Molecular Liquids, 337, 116060. doi: https://doi.org/10.1016/j.molliq.2021.116060
  25. Romdhani, A., Martínez, F., Almanza, O. A., Jouyban, A., Acree, W. E. (2020). Solubility of acetaminophen in (ethanol + propylene glycol + water) mixtures: Measurement, correlation, thermodynamics, and volumetric contribution at saturation. Journal of Molecular Liquids, 318, 114065. doi: https://doi.org/10.1016/j.molliq.2020.114065
  26. Shen, Y., Farajtabar, A., Xu, J., Wang, J., Xia, Y., Zhao, H., & Xu, R. (2019). Thermodynamic solubility modeling, solvent effect and preferential solvation of curcumin in aqueous co-solvent mixtures of ethanol, n-propanol, isopropanol and propylene glycol. The Journal of Chemical Thermodynamics, 131, 410–419. doi: https://doi.org/10.1016/j.jct.2018.11.022
  27. Fathi-Azarjbayjani, A., Mabhoot, A., Martínez, F., Jouyban, A. (2016). Modeling, solubility, and thermodynamic aspects of sodium phenytoin in propylene glycol–water mixtures. Journal of Molecular Liquids, 219, 68–73. doi: https://doi.org/10.1016/j.molliq.2016.02.089
  28. Delgado, D. R., Rodríguez, G. A., Holguín, A. R., Martínez, F., Jouyban, A. (2013). Solubility of sulfapyridine in propylene glycol+water mixtures and correlation with the Jouyban–Acree model. Fluid Phase Equilibria, 341, 86–95. doi: https://doi.org/10.1016/j.fluid.2012.12.017
  29. Jiménez, D. M., Cárdenas, Z. J., Martínez, F. (2016). Solubility and solution thermodynamics of sulfadiazine in polyethylene glycol 400 + water mixtures. Journal of Molecular Liquids, 216, 239–245. doi: https://doi.org/10.1016/j.molliq.2015.12.114
  30. Abbasi, M., Martinez, F., Jouyban, A. (2014). Prediction of deferiprone solubility in aqueous mixtures of ethylene glycol, propylene glycol and polyethylene glycol 400 at various temperatures. Journal of Molecular Liquids, 197, 171–175. doi: https://doi.org/10.1016/j.molliq.2014.05.004
  31. Behboudi, E., Soleymani, J., Martinez, F., Jouyban, A. (2022). Solubility of amlodipine besylate in binary mixtures of polyethylene glycol 400 + water at various temperatures: Measurement and modelling. Journal of Molecular Liquids, 347, 118394. doi: https://doi.org/10.1016/j.molliq.2021.118394
  32. Jouyban, A., Martinez, F., Panahi-Azar, V. (2014). Solubility of fluphenazine decanoate in aqueous mixtures of polyethylene glycols 400 and 600 at various temperatures. Fluid Phase Equilibria, 368, 58–64. doi: https://doi.org/10.1016/j.fluid.2014.01.044
  33. Derzhavnyi reiestr likarskykh zasobiv Ukrainy. Available at: http://www.drlz.kiev.ua/
  34. Pandey, S. K., Goyal, V. K., Nalge, P., Are, P., Vincent, S., Nirogi, R. (2017). Assessment of toxicity and tolerability of a combination vehicle; 5 % Pharmasolve, 45 % Propylene glycol and 50 % Polyethylene glycol 400 in rats following repeated intravenous administration. Regulatory Toxicology and Pharmacology, 91, 103–108. doi: https://doi.org/10.1016/j.yrtph.2017.10.016
  35. Bezugla, O. P., Lyapunov, M. O., Zinchenko, I. O., Lisokobilka, O. A., Liapunova, A. M. (2022). Modeling of processes of solvent diffusion from ointment bases using in vitro experiments. Functional materials, 29 (4), 553–558. doi: https://doi.org/10.15407/fm29.04.553
  36. The United States Pharmacopoeia, 41 – NF 36 (2018). The United States Pharmacopoeial Convention. Rockville. Available at: https://www.worldcat.org/title/united-states-pharmacopeia-2018-usp-41-the-national-formulary-nf-36/oclc/1013752699
  37. Bezuglaya, E., Zinchenko, I., Lyapunov, N., Vlasenko, H., Musatov, V. (2021). Substantiation of an approach to determination of ketoprofen macrogol 400 esters. ScienceRise: Pharmaceutical Science, 3 (31), 51–63. doi: https://doi.org/10.15587/2519-4852.2021.235980
  38. The European Pharmacopoeia (2022). EDQM. Strasbourg: Council of Europe. Available at: http://pheur.edqm.eu/subhome/11-0
  39. Derzhavna Farmakopeia Ukrainy. Vol 1 (2015). Kharkiv: Derzhavne pidpryiemstvo «Ukrainskyi naukovyi farmakopeinyi tsentr yakosti likarskykh zasobiv», 1128.
  40. Ilić, T., Pantelić, I., Savić, S. (2021). The Implications of Regulatory Framework for Topical Semisolid Drug Products: From Critical Quality and Performance Attributes towards Establishing Bioequivalence. Pharmaceutics, 13 (5), 710. doi: https://doi.org/10.3390/pharmaceutics13050710
  41. Tiffner, K. I., Kanfer, I., Augustin, T., Raml, R., Raney, S. G., Sinner, F. (2018). A comprehensive approach to qualify and validate the essential parameters of an in vitro release test (IVRT) method for acyclovir cream, 5 %. International Journal of Pharmaceutics, 535 (1-2), 217–227. doi: https://doi.org/10.1016/j.ijpharm.2017.09.049
  42. Fialkov, Iu. Ia., Zhitomirskii, A. N., Tarasenko, Iu. A. (1973). Fizicheskaia khimiia nevodnykh rastvorov. Leningrad: Khimiia, 376.
  43. Krasnoperova, A. P., Iukhno, G. D., Piliaeva, T. S. (1987). Viazkost i termodinamika aktivatcii viazkogo techeniia sistemy voda – polietilenglikol-400. Vestnik Kharkovskogo gosudarstvennogo universiteta, 300, 19–21.
  44. Lipatov, Iu. S., Shilov, V. V., Gomza, Iu. P., Krugliak, N. E. (1982). Rentgenograficheskie metody issledovaniia polimerov. Kyiv: Naukova dumka, 296.

Downloads

Published

2023-02-28

How to Cite

Bezuglaya, E., Krasnopyorova, A., Liapunova, A., Zinchenko, I., Lyapunov, N., & Sytnik, O. (2023). Influence of physicochemical properties and structure of mixed solvents propylene glycol – macrogol 400 on their in vitro release. ScienceRise: Pharmaceutical Science, (1(41), 4–13. https://doi.org/10.15587/2519-4852.2023.274468

Issue

Section

Pharmaceutical Science