Bioisosteric replacement in the search for antimicrobial agents: design, synthesis and activity of novel 6-(1h-Benzimidazol-2-yl)-1-alkyl-3,5-dimethylthieno[2,3-d]pyrimidine-2,4(1h,3h)-dione derivatives

Authors

DOI:

https://doi.org/10.15587/2519-4852.2025.334881

Keywords:

thienpyrimidine, benzimidazole, alkylation, antimicrobial activity, docking

Abstract

The aim. To apply the concept of bioisosterism for the structural optimization of benzimidazole–thieno[2,3-d]pyrimidine hybrids aimed at developing effective antibacterial agents as potential inhibitors of the bacterial enzyme TrmD.

Materials and Methods. Organic synthesis methods; structure confirmation by ¹H, ¹³C, and HMBC NMR spectroscopy, LC-MS, and elemental analysis. Molecular docking was performed using AutoDock Vina, AutoDockTools 1.5.6, and Discovery Studio Client. Antimicrobial activity was evaluated using the agar diffusion method, and the impact on biofilm formation/disruption was assessed using the crystal violet assay.

Results and Discussion. The bioisosteric modification involved oxidation of the thione group in 3,5-dimethyl-4-oxo-2-thioxothieno[2,3-d]pyrimidine-6-carboxylate. The resulting 2,4-dioxothieno[2,3-d]pyrimidine-6-carboxylic acid was activated with 1,1′-carbonyldiimidazole to form a benzimidazole fragment in a one-pot procedure. Alkylation of the obtained hybrid with chloroacetamides led to regioselective products confirmed by HMBC. All synthesized compounds demonstrated significant antimicrobial activity against both Gram-positive and Gram-negative test strains. Compound 5c with a 4-ethoxyphenyl substituent processed the highest activity, including effectiveness against clinical strains of S. aureus and P. aeruginosa. Compound 5c also demonstrated notable biofilm disruption capacity against S. aureus, E. coli, P. aeruginosa, and C. albicans. Molecular docking to the TrmD bacterial enzyme confirmed the formation of a hydrogen bond between the 2-oxo group and Glu121.

Conclusions. An efficient method was developed for the synthesis of a novel series of 2-[6-(1H-benzimidazol-2-yl)-3,5-dimethyl-2,4-dioxo-3,4-dihydrothieno[2,3-d]pyrimidin-1(2H)-yl]-N-arylacetamides. Bioisosteric hybrids showed enhanced antimicrobial properties and improved binding affinity to bacterial TrmD. Compound 5c demonstrated high activity against both Gram-positive and Gram-negative strains, including clinical isolates, as well as the ability to disrupt biofilms, highlighting its potential as a promising lead for further development

Supporting Agency

  • The research was funded by the Ministry of Health Care of Ukraine at the expense of the State Budget in the framework # 2301020 “Scientific and scientific-technical activity in the field of health protection” on the topic “Synthesis and study of new thienopyrimidines for the detection of antimicrobial and related types of pharmacological activity” (Order of the Ministry of Health of Ukraine of November 17, 2020 No. 2651).

Author Biographies

Sergiy Vlasov, Taras Shevchenko National University of Kyiv; Enamine Ltd.

Doctor of Pharmaceutical Sciences, Professor

Department of Supramolecular Chemistry

Hanna Severina, National University of Pharmacy

Doctor of Pharmaceutical Science, Professor

Department of Pharmaceutical Chemistry

Oleksandr Borysov, Institute of Organic Chemistry of National Academy of Sciences of Ukraine; Enamine Ltd.

PhD, Senior Researcher

Department of Medicinal Chemistry

Georgiy Yakovenko, Taras Shevchenko National University of Kyiv; Enamine Ltd.

PhD

Chemical Faculty

Andrii Khairulin, Taras Shevchenko National University of Kyiv; Enamine Ltd.

PhD

Chemical Faculty

Pavlo Shynkarenko, Enamine Ltd.

PhD

Roman Rudenko, Taras Shevchenko National University of Kyiv; Enamine Ltd.

PhD

Chemical Faculty

Vladimir Bozhanov, Institute of Organic Chemistry of National Academy of Sciences of Ukraine; Enamine Ltd.

PhD

Department of Medicinal Chemistry

Nataliia Smielova, National University of Pharmacy

PhD

Department of Pharmaceutical Chemistry

Nataliia Filimonova, National University of Pharmacy

Doctor of Medical Sciences, Professor

Department of Clinical Laboratory Diagnostics, Microbiology and Biological Chemistry

Victoriya Georgiyants, National University of Pharmacy

Doctor of Pharmaceutical Sciences, Professor, Head of Department

Department of Pharmaceutical Chemistry

References

  1. Lagardère, P., Fersing, C., Masurier, N., Lisowski, V. (2021). Thienopyrimidine: A Promising Scaffold to Access Anti-Infective Agents. Pharmaceuticals, 15 (1), 35. https://doi.org/10.3390/ph15010035
  2. Shyyka, O., Pokhodylo, N., Finiuk, N., Matiychuk, V., Stoika, R., Obushak, M. (2018). Anticancer Activity Evaluation of New Thieno[2,3-d]pyrimidin-4(3H)-ones and Thieno[3,2-d]pyrimidin-4(3H)-one Derivatives. Scientia Pharmaceutica, 86 (3), 28. https://doi.org/10.3390/scipharm86030028
  3. Sayed, M. T. M., Halim, P. A., El‐Ansary, A. K., Hassan, R. A. (2023). Design, synthesis, anticancer evaluation, and in silico studies of some thieno[2,3‐d]pyrimidine derivatives as EGFR inhibitors. Drug Development Research, 84 (6), 1299–1319. Portico. https://doi.org/10.1002/ddr.22088
  4. Ghith, A., Youssef, K. M., Ismail, N. S. M., Abouzid, K. A. M. (2019). Design, synthesis and molecular modeling study of certain VEGFR-2 inhibitors based on thienopyrimidne scaffold as cancer targeting agents. Bioorganic Chemistry, 83, 111–128. https://doi.org/10.1016/j.bioorg.2018.10.008
  5. Fouad, M. M., El-Bendary, E. R., suddek, G. M., Shehata, I. A., El-Kerdawy, M. M. (2018). Synthesis and in vitro antitumor evaluation of some new thiophenes and thieno[2,3-d]pyrimidine derivatives. Bioorganic Chemistry, 81, 587–598. https://doi.org/10.1016/j.bioorg.2018.09.022
  6. Elmetwally, S. A., Saied, K. F., Eissa, I. H., Elkaeed, E. B. (2019). Design, synthesis and anticancer evaluation of thieno[2,3-d]pyrimidine derivatives as dual EGFR/HER2 inhibitors and apoptosis inducers. Bioorganic Chemistry, 88, 102944. https://doi.org/10.1016/j.bioorg.2019.102944
  7. Shore, N. D., Saad, F., Cookson, M. S., George, D. J., Saltzstein, D. R., Tutrone, R. et al. (2020). Oral Relugolix for Androgen-Deprivation Therapy in Advanced Prostate Cancer. New England Journal of Medicine, 382(23), 2187–2196. https://doi.org/10.1056/nejmoa2004325
  8. Kasparian, S., Wei, O., Tsai, N.-C., Palmer, J., Pal, S., Lyou, Y., Dorff, T. (2023). A Practical Guide to Relugolix: Early Experience With Oral Androgen Deprivation Therapy. The Oncologist, 28 (8), 699–705. https://doi.org/10.1093/oncolo/oyad036
  9. Miwa, K., Hitaka, T., Imada, T., Sasaki, S., Yoshimatsu, M., Kusaka, M. et al. (2011). Discovery of 1-{4-[1-(2,6-Difluorobenzyl)-5-[(dimethylamino)methyl]-3-(6-methoxypyridazin-3-yl)-2,4-dioxo-1,2,3,4-tetrahydrothieno[2,3-d]pyrimidin-6-yl]phenyl}-3-methoxyurea (TAK-385) as a Potent, Orally Active, Non-Peptide Antagonist of the Human Gonadotropin-Releasing Hormone Receptor. Journal of Medicinal Chemistry, 54 (14), 4998–5012. https://doi.org/10.1021/jm200216q
  10. Woodring, J. L., Behera, R., Sharma, A., Wiedeman, J., Patel, G., Singh, B. et al. (2018). Series of Alkynyl-Substituted Thienopyrimidines as Inhibitors of Protozoan Parasite Proliferation. ACS Medicinal Chemistry Letters, 9 (10), 996–1001. https://doi.org/10.1021/acsmedchemlett.8b00245
  11. Bell, A. S., Yu, Z., Hutton, J. A., Wright, M. H., Brannigan, J. A., Paape, D. et al. (2020). Novel Thienopyrimidine Inhibitors of Leishmania N-Myristoyltransferase with On-Target Activity in Intracellular Amastigotes. Journal of Medicinal Chemistry, 63 (14), 7740–7765. https://doi.org/10.1021/acs.jmedchem.0c00570
  12. Barrows, R. D., Hammill, J. T., Tran, M. C., Falade, M. O., Rice, A. L., Davis, C. W. et al. (2020). Evaluation of 1,1-cyclopropylidene as a thioether isostere in the 4-thio-thienopyrimidine (TTP) series of antimalarials. Bioorganic & Medicinal Chemistry, 28 (22), 115758. https://doi.org/10.1016/j.bmc.2020.115758
  13. Bassetto, M., Leyssen, P., Neyts, J., Yerukhimovich, M. M., Frick, D. N., Brancale, A. (2016). Computer-aided identification, synthesis and evaluation of substituted thienopyrimidines as novel inhibitors of HCV replication. European Journal of Medicinal Chemistry, 123, 31–47. https://doi.org/10.1016/j.ejmech.2016.07.035
  14. Vargas, B., Giacobbi, N. S., Sanyal, A., Venkatachari, N. J., Han, F., Gupta, P., Sluis-Cremer, N. (2019). Inhibitors of Signaling Pathways That Block Reversal of HIV-1 Latency. Antimicrobial Agents and Chemotherapy, 63(2). https://doi.org/10.1128/aac.01744-18
  15. Sang, Y., Han, S., Pannecouque, C., De Clercq, E., Zhuang, C., Chen, F. (2019). Conformational restriction design of thiophene-biphenyl-DAPY HIV-1 non-nucleoside reverse transcriptase inhibitors. European Journal of Medicinal Chemistry, 182, 111603. https://doi.org/10.1016/j.ejmech.2019.111603
  16. Tolba, M. S., El-Dean, A. M. K., Ahmed, M., Hassanien, R., Farouk, M. (2017). Synthesis and antimicrobial activity of some new thienopyrimidine derivatives. Arkivoc, 2017 (5), 229–243. https://doi.org/10.24820/ark.5550190.p010.226
  17. Hafez, H. N., El-Gazzar, A.-R. B. A., Zaki, M. E. A. (2016). Simple approach to thieno[3,2-d]pyrimidines as new scaffolds of antimicrobial activities. Acta Pharmaceutica, 66 (3), 331–351. https://doi.org/10.1515/acph-2016-0029
  18. de Candia, M., Altamura, C., Denora, N., Cellamare, S., Nuzzolese, M., De Vito, D. et al. (2017). Physicochemical properties and antimicrobial activity of new spirocyclic thieno[2,3-d]pyrimidin-4(3H)-one derivatives. Chemistry of Heterocyclic Compounds, 53 (3), 357–363. https://doi.org/10.1007/s10593-017-2057-1
  19. Malasala, S., Polomoni, A., Ahmad, Md. N., Shukla, M., Kaul, G., Dasgupta, A. et al. (2021). Structure based design, synthesis and evaluation of new thienopyrimidine derivatives as anti-bacterial agents. Journal of Molecular Structure, 1234, 130168. https://doi.org/10.1016/j.molstruc.2021.130168
  20. Sirwan, K. A., Safin, H., Karzan, Q., Radhwan, H. I., Abdulmalik, F., Kochr, A. M., Mona, G. M. (2024). Antimicrobial resistance: Impacts, challenges, and future prospects. Journal of Medicine, Surgery, and Public Health, 2, 100081. https://doi.org/10.1016/j.glmedi.2024.100081
  21. Khan, R. T., Sharma, V., Khan, S. S., Rasool, S. (2024). Prevention and potential remedies for antibiotic resistance: current research and future prospects. Frontiers in Microbiology, 15. https://doi.org/10.3389/fmicb.2024.1455759
  22. Harrison, G. A., Mayer Bridwell, A. E., Singh, M., Jayaraman, K., Weiss, L. A., Kinsella, R. L. et al. (2019). Identification of 4-Amino-Thieno[2,3-d]Pyrimidines as QcrB Inhibitors in Mycobacterium tuberculosis. MSphere, 4 (5). https://doi.org/10.1128/msphere.00606-19
  23. Hill, P. J., Abibi, A., Albert, R., Andrews, B., Gagnon, M. M., Gao, N. et al. (2013). Selective Inhibitors of Bacterial t-RNA-(N1G37) Methyltransferase (TrmD) That Demonstrate Novel Ordering of the Lid Domain. Journal of Medicinal Chemistry, 56 (18), 7278–7288. https://doi.org/10.1021/jm400718n
  24. Zhong, W., Pasunooti, K. K., Balamkundu, S., Wong, Y. H., Nah, Q., Gadi, V. et al. (2019). Thienopyrimidinone Derivatives That Inhibit Bacterial tRNA (Guanine37-N1)-Methyltransferase (TrmD) by Restructuring the Active Site with a Tyrosine-Flipping Mechanism. Journal of Medicinal Chemistry, 62 (17), 7788–7805. https://doi.org/10.1021/acs.jmedchem.9b00582
  25. Uddin, T. M., Chakraborty, A. J., Khusro, A., Zidan, B. R. M., Mitra, S., Emran, T. B. et al. (2021). Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. Journal of Infection and Public Health, 14 (12), 1750–1766. https://doi.org/10.1016/j.jiph.2021.10.020
  26. Meanwell, N. A. (2023). Applications of Bioisosteres in the Design of Biologically Active Compounds. Journal of Agricultural and Food Chemistry, 71 (47), 18087–18122. https://doi.org/10.1021/acs.jafc.3c00765
  27. Tse, E. G., Houston, S. D., Williams, C. M., Savage, G. P., Rendina, L. M., Hallyburton, I. et al. (2020). Nonclassical Phenyl Bioisosteres as Effective Replacements in a Series of Novel Open-Source Antimalarials. Journal of Medicinal Chemistry, 63 (20), 11585–11601. https://doi.org/10.1021/acs.jmedchem.0c00746
  28. Lima, L. M., Barreiro, E. J. (2017). Beyond Bioisosterism: New Concepts in Drug Discovery. Comprehensive Medicinal Chemistry III. Elsevier, 186–210. https://doi.org/10.1016/b978-0-12-409547-2.12290-5
  29. Vlasov, S. V., Vlasova, O. D., Severina, H. I., Krolenko, K. Yu., Borysov, O. V., Abu Sharkh, A. I. M. et al. (2021). Design, Synthesis and In Vitro Antimicrobial Activity of 6-(1H-Benzimidazol-2-yl)-3,5-dimethyl-4-oxo-2-thio-3,4-dihydrothieno[2,3-d]pyrimidines. Scientia Pharmaceutica, 89 (4), 49. https://doi.org/10.3390/scipharm89040049
  30. Vlasov, S., Krolenko, K., Severina, H., Vlasova, O., Borysov, O., Shynkarenko, P. et al. (2022). Novel 4-methylthienopyrimidines as antimicrobial agents: synthesis, docking study and in vitro evaluation. Journal of Applied Pharmaceutical Science, 13 (4), 105–113. https://doi.org/10.7324/japs.2023.102631
  31. Vlasov, S. V., Borysov, O. V., Severina, H. I., Vlasov, V. S., Abu Sharkh, A. I. M., Georgiyants, V. A. (2024). Synthesis, in silico and in vitro antimicrobial activity of N-(benzyl)-5-methyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-6-carboxamides. Pharmacia, 71, 1–9. https://doi.org/10.3897/pharmacia.71.e110013
  32. Grytsak, O., Shabelnyk, K., Severina, H., Ryzhenko, V., Voskoboinik, O., Belenichev, I. et al. (2024). Bioisosteric Replacement in the Search for Biologically Active Compounds: Design, Synthesis and Anti-Inflammatory Activity of Novel [1,2,4]triazino[2,3-c]quinazolines. Pharmaceuticals, 17 (11), 1437. https://doi.org/10.3390/ph17111437
  33. Daoud, N. E.-H., Borah, P., Deb, P. K., Venugopala, K. N., Hourani, W., Alzweiri, M. et al. (2021). ADMET Profiling in Drug Discovery and Development: Perspectives of In Silico, In Vitro and Integrated Approaches. Current Drug Metabolism, 22 (7), 503–522. https://doi.org/10.2174/1389200222666210705122913
  34. Vlasov, S. V., Chernykh, V. P., Osolodchenko, T. P. (2015). Synthesis and the antimicrobial activity of ethyl 3-alkyl-2-(alkylthio)-5-methyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-6-carboxylate derivatives. News of Pharmacy, 3 (83), 3–8. https://doi.org/10.24959/nphj.15.2070
  35. Volianskyi, Yu. L., Hrytsenko, I. S., Shyrobokov, V. P. (2004). Vyvchennia spetsyfichnoi aktyvnosti protymikrobnykh likarskykh zasobiv. Kyiv: DFTs MOZ Ukrainy, 38.
  36. Cavalieri, S. J., Harbeck, R. J., McCarter, Y. S., Ortez, J. H., Rankin, I. D., Sautter, R. L.; Coyle, M. B. (Ed.) (2005). Manual of Antimicrobial Susceptibility Testing. Washington: American Society for Microbiology, 241.
  37. Bogatyrova, O., Hurina, V., Naboka, O., Filimonova, N., Dzhoraieva, S., Mykhailenko, O., Georgiyants, V. (2024). Lavandula Angustifolia Mill. of Ukrainian origin: a comparative study of the chemical composition and antimicrobial potential of herb extracts. ScienceRise: Pharmaceutical Science, 5 (51), 4–14. https://doi.org/10.15587/2519-4852.2024.313236
  38. Dewal, M. B., Wani, A. S., Vidaillac, C., Oupický, D., Rybak, M. J., Firestine, S. M. (2012). Thieno[2,3-d]pyrimidinedione derivatives as antibacterial agents. European Journal of Medicinal Chemistry, 51, 145–153. https://doi.org/10.1016/j.ejmech.2012.02.035
  39. Härter, M., Kalthof, B., Delbeck, M., Lustig, K., Gerisch, M., Schulz, S. et al. (2019). Novel non-xanthine antagonist of the A2B adenosine receptor: From HTS hit to lead structure. European Journal of Medicinal Chemistry, 163, 763–778. https://doi.org/10.1016/j.ejmech.2018.11.045
  40. El Kayal, W. M., Shtrygol, S. Y., Zalevskyi, S. V., Shark, A. abu, Tsyvunin, V. V., Kovalenko, S. M. et al. (2019). Synthesis, in vivo and in silico anticonvulsant activity studies of new derivatives of 2-(2,4-dioxo-1,4-dihydroquinazolin-3(2H)-yl)acetamide. European Journal of Medicinal Chemistry, 180, 134–142. https://doi.org/10.1016/j.ejmech.2019.06.085
Bioisosteric replacement in the search for antimicrobial agents: design, synthesis and activity of novel 6-(1h-Benzimidazol-2-yl)-1-alkyl-3,5-dimethylthieno[2,3-d]pyrimidine-2,4(1h,3h)-dione derivatives

Downloads

Published

2025-08-30

How to Cite

Vlasova, O., Vlasov, S., Severina, H., Borysov, O., Yakovenko, G., Khairulin, A., Shynkarenko, P., Rudenko, R., Bozhanov, V., Smielova, N., Filimonova, N., & Georgiyants, V. (2025). Bioisosteric replacement in the search for antimicrobial agents: design, synthesis and activity of novel 6-(1h-Benzimidazol-2-yl)-1-alkyl-3,5-dimethylthieno[2,3-d]pyrimidine-2,4(1h,3h)-dione derivatives. ScienceRise: Pharmaceutical Science, (4 (56), 43–55. https://doi.org/10.15587/2519-4852.2025.334881

Issue

Section

Pharmaceutical Science