Edvin Gevorkyan
Department of Wagon Engineering and Product Quality, Ukrainian State University of Railway Transport, Kharkiv, Ukraine;
Casimir Pulaski Radom University, Poland
Doctor of Technical Sciences, Professor
Scopus profile: link
Researcher ID: AAZ-2297-2020
Google Scholar profile: link
ID ORCID: http://orcid.org/0000-0003-0521-3577
Selected Publications:
1. Gevorkyan, E. S., Nerubatskyi, V. P., Vovk, R. V., Szumiata, T., Hordiienko, D. A., Gzik-Szumiata, M. (2023). Thermodynamic features of the synthesis of high-density ceramic-metal materials “chromium oxide–chromium” from mixtures “chromium oxide–carbon” in the process of hot pressing. Low Temperature Physics, 49 (4), 384. doi: https://doi.org/10.1063/10.0017575
2. Gevorkyan, E. S., Nerubatskyi, V. P., Vovk, R. V., Zinchenko, O. Y., Komarova, H. L., Voloshyna, L. V. (2023). Investigation of the features of blade processing of steels with ceramic composites based on chromium oxide. Low Temperature Physics, 49 (4), 398. doi: https://doi.org/10.1063/10.0017577
3. Gevorkyan, E. S., Sofronov, D. S., Nerubatskyi, V. P., Chyshkala, V. O., Morozova, O. M., Lebedynskyi, O. M., Mateychenko, P. V. (2023). A Study on the Formation and Sintering of Powders Synthesized from ZrO2 Micro- and Nanoparticles from Fluoride Solutions. Journal of Superhard Materials, 45 (1), 31–45. doi: https://doi.org/10.3103/s1063457623010057
4. Gevorkyan, E., Chmiel, J., Wiśnicki, B., Dzhuguryan, T., Rucki, M., Nerubatskyi, V. (2022). Smart Sustainable Production Management for City Multifloor Manufacturing Clusters: An Energy-Efficient Approach to the Choice of Ceramic Filter Sintering Technology. Energies, 15 (17), 6443. doi: https://doi.org/10.3390/en15176443
5. Gevorkyan, E., Rucki, M., Nerubatskyi, V., Siemiatkowski, Z., Morozow, D., Komarova, H. (2022). Theoretical Model of the Densification During Hot Pressing and its Verification. Lecture Notes in Mechanical Engineering, 113–123. doi: https://doi.org/10.1007/978-3-031-00805-4_10
6. Krzysiak, Z., Gevorkyan, E., Nerubatskyi, V., Rucki, M., Chyshkala, V., Caban, J., Mazur, T. (2022). Peculiarities of the Phase Formation during Electroconsolidation of Al2O3–SiO2–ZrO2 Powders Mixtures. Materials, 15 (17), 6073. doi: https://doi.org/10.3390/ma15176073
7. Lytovchenko, S. V., Gevorkyan, E. S., Nerubatskyi, V. P., Chyshkala, V. O., Voloshyna, L. V. (2022). A Study of the Peculiarities of Molding and Structure Formation of Compacted Multicomponent Silicide Composites. Journal of Superhard Materials, 44 (3), 176–190. doi: https://doi.org/10.3103/s1063457622030054
8. Zurowski, W., Zepchło, J., Krzyzak, A., Gevorkyan, E., Rucki, M., Siek, E., Białkowska, A. (2021). Wear Resistance of the Glass-Fiber Reinforced Polymer Composite with the Addition of Quartz Filler. Materials, 14 (14), 3825. doi: https://doi.org/10.3390/ma14143825
9. Gevorkyan, E., Prikhna, T., Vovk, R., Rucki, M., Siemiątkowski, Z., Kucharczyk, W. et. al. (2021). Sintered nanocomposites ZrO2-WC obtained with field assisted hot pressing. Composite Structures, 259, 113443. doi: http://doi.org/10.1016/j.compstruct.2020.113443
10. Chishkala, V., Lytovchenko, S., Mazilin, B., Gevorkyan, E., Shkuropatenko, V., Voyevodin, V. et. al. (2020). Novel Microwave-Assisted Method of Y2Ti2O7 Powder Synthesis. Materials, 13 (24), 5621. doi: http://doi.org/10.3390/ma13245621
11. Gevorkyan, E., Rucki, M., Panchenko, S., Sofronov, D., Chałko, L., & Mazur, T. (2020). Effect of SiC Addition to Al2O3 Ceramics Used in Cutting Tools. Materials, 13 (22), 5195. doi: http://doi.org/10.3390/ma13225195
12. Gevorkyan, E. S., Rucki, M., Kagramanyan, A. A., Nerubatskiy, V. P. (2019). Composite material for instrumental applications based on micro powder Al2O3 with additives nano-powder SiC. International Journal of Refractory Metals and Hard Materials, 82, 336–339. doi: https://doi.org/10.1016/j.ijrmhm.2019.05.010
13. Prokopiv, N., Kharchenko, O., Gevorkyan, E., Gutsalenko, Y. (2019). Exploring the process to obtain a composite based on Cr2O3–AlN using a method of hot pressing. Eastern-European Journal of Enterprise Technologies, 3 (12 (99)), 17–21. doi: https://doi.org/10.15587/1729-4061.2019.171805
14. Gevorkyan, E., Prokopiv, M., Rucki, M., Morozow, D. (2019). Durability and exploitation performance of cutting tools made out of chromium oxide nanocomposite materials. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 21 (4), 686–691. doi: https://doi.org/10.17531/ein.2019.4.19
15. Kislitsa, M. V., Khadzhai, G. Y., Gevorkyan, E. S., Vovk, R. V. (2019). Thermal conductivity of Al2O3-SiC nanocomposites prepared by the electroconsolidation method. Low Temperature Physics, 45 (4), 419–421. doi: https://doi.org/10.1063/1.5093522
16. Boyko, Yu. I., Bogdanov, V. V., Gevorkyan, E. S., Vovk, R. V., Korshak, V. F., Kolesnichenko, V. A. (2019). Creep of the Ti3AlC2 MAX-phase ceramics. Functional Materials, 26 (1), 83–87. doi: https://doi.org/10.15407/fm26.01.83
17. Boyko, Yu. I., Bogdanov, V. V., Vovk, R. V., Gevorkyan, E. S., Kolesnichenko, V. A., Korshak, V. F., Prikhna, T. A. (2018). Thermal and crack resistance of ceramics based on the MAX phase Ti3AlC2. Functional Materials, 25 (4), 708–712. doi: https://doi.org/10.15407/fm25.04.708
18. Vovk, R. V., Khadzhai, G. Y., Prikhna, T. A., Gevorkyan, E. S., Kislitsa, M. V., Soloviev, A. L. et. al. (2018). Charge and heat transfer of the Ti3AlC2 MAX phase. Journal of Materials Science: Materials in Electronics, 29 (13), 11478–11481. doi: https://doi.org/10.1007/s10854-018-9242-6
19. Khadzhai, G. Y., Vovk, R. V., Prichna, T. A., Gevorkyan, E. S., Kislitsa, M. V., Solovjov, A. L. (2018). Electrical and thermal conductivity of the Ti3AlC2 MAX phase at low temperatures. Low Temperature Physics, 44 (5), 451–452. doi: https://doi.org/10.1063/1.5034158
20. Lavrynenko, S., Mamalis, A. G., Gevorkyan, E. (2018). Features of Consolidation of Nanoceramics for Aerospace Industry. Materials Science Forum, 915, 179–184. doi: https://doi.org/10.4028/www.scientific.net/msf.915.179
21. Prokopiv, N. M., Gevorkyan, E. S., Vovk, R. V., Harchenko, O. V., Chishkala, V. A. (2018). Structure and properties of solid BK6 -OM alloy after electrosintering. Functional Materials, 25 (2), 267–273. doi: https://doi.org/10.15407/fm25.02.267