Zhenjun Ma

University of Wollongong, Australia
Sustainable Buildings Research Centre

Scopus profile: link
Publons: link
Google Scholar profile: link
ID ORCID: https://orcid.org/0000-0001-5996-7206

Selected Publications:

  1. Shahsavar, A., Alwaeli, A. H. A., Azimi, N., Rostami, S., Sopian, K., Arıcı, M. et. al. (2022). Exergy studies in water-based and nanofluid-based photovoltaic/thermal collectors: Status and prospects. Renewable and Sustainable Energy Reviews, 168, 112740. doi: https://doi.org/10.1016/j.rser.2022.112740 

  2. Ren, H., Ma, Z., Li, W., Tyagi, V. V., Pandey, A. K. (2021). Optimisation of a renewable cooling and heating system using an integer-based genetic algorithm, response surface method and life cycle analysis. Energy Conversion and Management, 230, 113797. doi: http://doi.org/10.1016/j.enconman.2020.113797 

  3. Christopher, S., Parham, K., Mosaffa, A. H., Farid, M. M., Ma, Z., Thakur, A. K. et. al. (2021). A critical review on phase change material energy storage systems with cascaded configurations. Journal of Cleaner Production, 283, 124653. doi: http://doi.org/10.1016/j.jclepro.2020.124653 

  4. Jiang, S., Wang, S., Yu, Y., Ma, Z., Wang, J. (2021). Further analysis of the influence of interstage configurations on two-stage vapor compression heat pump systems. Applied Thermal Engineering, 184, 116050. doi: http://doi.org/10.1016/j.applthermaleng.2020.116050 

  5. Cascio, E. L., Ma, Z., Schenone, C. (2018). Performance assessment of a novel natural gas pressure reduction station equipped with parabolic trough solar collectors. Renewable Energy, 128, 177–187. doi: https://doi.org/10.1016/j.renene.2018.05.058 

  6. Lin, Q., Wang, S., Ma, Z., Wang, J., Zhang, T. (2018). Lattice Boltzmann simulation of flow and heat transfer evolution inside encapsulated phase change materials due to natural convection melting. Chemical Engineering Science, 189, 154–164. doi: https://doi.org/10.1016/j.ces.2018.05.052 

  7. Xia, L., Ma, Z., Kokogiannakis, G., Wang, S., Gong, X. (2018). A model-based optimal control strategy for ground source heat pump systems with integrated solar photovoltaic thermal collectors. Applied Energy, 228, 1399–1412. doi: https://doi.org/10.1016/j.apenergy.2018.07.026 

  8. Wang, Z., Wang, F., Ma, Z., Song, M., Fan, W. (2018). Experimental performance analysis and evaluation of a novel frost-free air source heat pump system. Energy and Buildings, 175, 69–77. doi: https://doi.org/10.1016/j.enbuild.2018.07.031 

  9. Gong, X., Xia, L., Ma, Z., Chen, G., Wei, L. (2018). Investigation on the optimal cooling tower input capacity of a cooling tower assisted ground source heat pump system. Energy and Buildings, 174, 239–253. doi: https://doi.org/10.1016/j.enbuild.2018.06.024 

  10. Ma, Z., Yan, R., Li, K., Nord, N. (2018). Building energy performance assessment using volatility change based symbolic transformation and hierarchical clustering. Energy and Buildings, 166, 284–295. doi: https://doi.org/10.1016/j.enbuild.2018.02.015 

  11. Fan, W., Kokogiannakis, G., Ma, Z. (2018). A multi-objective design optimisation strategy for hybrid photovoltaic thermal collector (PVT)-solar air heater (SAH) systems with fins. Solar Energy, 163, 315–328. doi: https://doi.org/10.1016/j.solener.2018.02.014