Tetyana Romanova

Leeds University Business School, University of Leeds, Leeds, United Kingdom
Anatolii Pidhornyi Institute of Power Machines and Systems of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
Kharkiv National University of Radio Electronics, Kharkiv, Ukraine
Doctor of Technical Sciences, Professor

Scopus profile: link
Researcher ID: AAW-1730-2020
GoogleScholar profile:
link
ID ORCID: https://orcid.org/0000-0002-8618-4917

Selected Publications:

  1. Melashenko, O., Romanova, T., Litvinchev, I., Martínez Gomez, C. G., Yang, R., Sun, B. (2025). A Model-Based Heuristic for Packing Soft Rotated Rectangles in an Optimized Convex Container with Prohibited Zones. Mathematics, 13 (3), 493. https://doi.org/10.3390/math13030493 
  2. Fischer, A., Litvinchev, I., Romanova, T., Stetsyuk, P., Yaskov, G. (2024). Packing spheres with quasi-containment conditions. Journal of Global Optimization, 90 (3), 671–689. https://doi.org/10.1007/s10898-024-01412-1 
  3. Litvinchev, I., Fischer, A., Romanova, T., Stetsyuk, P. (2024). A New Class of Irregular Packing Problems Reducible to Sphere Packing in Arbitrary Norms. Mathematics, 12 (7), 935. https://doi.org/10.3390/math12070935 
  4. Litvinchev, I., Infante, L., Romanova, T., Martinez-Noa, A., Gutierrez, L. (2024). Packing Soft Convex Polygons in an Optimized Convex Container. Mobile Networks and Applications, 29 (1), 211–220. https://doi.org/10.1007/s11036-023-02286-5 
  5. Bennell, J., Litvinchev, I., Pankratov, A., Romanova, T. (2024). Packing stretched convex polygons in an optimized rectangle. Wireless Networks, 30 (9), 7369–7376. https://doi.org/10.1007/s11276-023-03642-9 
  6. Romanova, T., Grebinyk, A., Pankratov, A., Stoyan, Y., Nechyporenko, A., Prylutskyy, Y. et al. (2023). Modeling and Computer Simulation of Nanocomplexation for Cancer Therapy. Computer Science and Engineering in Health Services, 257–272. https://doi.org/10.1007/978-3-031-34750-4_15 
  7. Fischer, A., Litvinchev, I., Romanova, T., Stetsyuk, P., Yaskov, G. (2023). Quasi-Packing Different Spheres with Ratio Conditions in a Spherical Container. Mathematics, 11 (9), 2033. https://doi.org/10.3390/math11092033