Grygoriy Zholtkevych

V. N. Karazin Kharkiv National University, Ukraine
Doctor of Technical Sciences, Professor
Department of Theoretical and Applied Computer Science 

Scopus profile: link
Researcher ID: E-2058-2011
Google Scholar profile:
link
ID ORCID: https://orcid.org/0000-0002-7515-2143

Selected Publications:

  1. Deineha, O., Donets, V., Zholtkevych, G. (2024). The approach development of data extraction from lambda terms. Eastern-European Journal of Enterprise Technologies, 3 (2 (129)), 42–54. https://doi.org/10.15587/1729-4061.2024.298991 

  2. Zholtkevych, G., Panchenko, A. (2023). About One Possible Tool for Analysing Safeness of Discrete Dynamic Systems. 2023 13th International Conference on Dependable Systems, Services and Technologies (DESSERT), 1–7. https://doi.org/10.1109/dessert61349.2023.10416480 

  3. Panchenko, A., Zholtkevych, G. (2022). An Approach to Construct Final Random System with Output. Information and Communication Technologies in Education, Research, and Industrial Applications, 3–22. https://doi.org/10.1007/978-3-031-20834-8_1 

  4. Chumachenko, D., Chumachenko, T., Meniailov, I., Muradyan, O., Zholtkevych, G. (2021). Forecasting of COVID-19 Epidemic Process by Lasso Regression. 2021 IEEE International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo). doi: https://doi.org/10.1109/ukrmico52950.2021.9716621 

  5. Zholtkevych, G., Labzhaniia, M. (2021). Coalgebraic Approach to Studying Discrete Systems with Output. Communications in Computer and Information Science, 141–165. doi: https://doi.org/10.1007/978-3-030-77592-6_7 

  6. Zholtkevych, G., Muradyan, O., Ohulchanskyi, K., Shelest, S. (2020). About One Approach to Modelling Dynamics of Network Community Opinion. Communications in Computer and Information Science, 327–347. doi: http://doi.org/10.1007/978-3-030-39459-2_15 

  7. Shabanov, D., Vladymyrova, M., Leonov, A., Biriuk, O., Kravchenko, M., Mair, Q. et. al. (2020). Simulation as a Method for Asymptotic System Behavior Identification (e.g. Water Frog Hemiclonal Population Systems). Communications in Computer and Information Science, 392–414. doi:  http://doi.org/10.1007/978-3-030-39459-2_18

  8. Zholtkevych, G., Polyakova, L., El Zein, H. K. (2019). Category Methods for Modelling Logical Time Based on the Concept of Clocks. Communications in Computer and Information Science, 89–101. doi: http://doi.org/10.1007/978-3-030-13929-2_5

  9. Zholtkevych, G. N., Nosov, K. V., Bespalov, Y. G., Rak, L. I., Abhishek, M., Vysotskaya, E. V. (2018). Descriptive Modeling of the Dynamical Systems and Determination of Feedback Homeostasis at Different Levels of Life Organization. Acta Biotheoretica. doi: https://doi.org/10.1007/s10441-018-9321-3 

  10. Zholtkevych, G., El Zein, H. K. (2018). Two Approaches to Modelling Logical Time in Cyber-Physical Systems. Communications in Computer and Information Science, 21–40. doi: https://doi.org/10.1007/978-3-319-76168-8_2 

  11. Zholtkevych, G. N., Nosov, K. V., Bespalov, Y. G., Rak, L. I., Vysotskaya, E. V., Balkova, Y. B., Kolomiychenko, V. K. (2017). Descriptive Models of System Dynamics. Communications in Computer and Information Science, 97–114. doi: https://doi.org/10.1007/978-3-319-69965-3_6 

  12. Nosov, K., Zholtkevych, G., Georgiyants, M., Vysotska, O., Balym, Y., Porvan, A. (2017). Development of the descriptive binary model and its application for identification of clumps of toxic cyanobacteria. Eastern-European Journal of Enterprise Technologies, 4 (4 (88)), 4–11. doi: ttps://doi.org/10.15587/1729-4061.2017.108285 

  13. Zholtkevych, G. (2016). Realisation of Synchronous and Asynchronous Black Boxes Using Machines. Communications in Computer and Information Science, 124–139. doi: https://doi.org/10.1007/978-3-319-30246-1_8 

  14. Mallet, F., Zholtkevych, G. (2015). Coalgebraic Semantic Model for the Clock Constraint Specification Language. Formal Techniques for Safety-Critical Systems, 174–188. doi: https://doi.org/10.1007/978-3-319-17581-2_12 

  15. Novikov, B. V., Polyakova, L. Y., Zholtkevich, G. N. (2014). Decomposition of Directed Graphs and the Turán Problem. Ukrainian Mathematical Journal, 66 (7), 1070–1084. doi: https://doi.org/10.1007/s11253-014-0995-7