Optimization of thermal modes and cooling systems of the induction traction engines of trams

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.102236

Keywords:

tram carriage, induction engine, optimal operating modes, cooling fan

Abstract

We developed a procedure for the optimization of thermal modes and parameters of the cooling system of induction traction engines of tram carriages. The procedure includes the following basic steps. The optimization of operating modes of an induction traction drive by the criterion of effectiveness of its work under different modes. The optimization of motion modes of a tram carriage along a track section with the assigned motion schedule and profile based on the curves of the motion of a tram carriage, optimal by the criterion of energy consumption, using the method of Hamilton-Jacobi-Bellman. The optimization of parameters of the cooling fan of traction engines by the criterion of efficiency of a cooling system using the Weyl method by the generalized golden section. It is proposed to conduct determining of operating modes of a traction drive in advance based on the solution to the problem of conditional optimization of its modes. In order to determine the optimal operating modes of a traction drive, we selected a combined method: global search is executed by genetic algorithm with a one-point crossover and by selection on the principle of roulette. At the final stage of an optimization procedure, optimum refining is carried out using the Nelder–Mead method. When a tram carriage moved along a track section, we defined the following. We determined the optimal modes of motion of the tram carriage T-3 VPA with induction traction engines for a track section with the assigned motion schedule. It was found that, compared with the basic design, efficiency of the cooling system increased by 27.6 %, which corresponds to a reduction in the proposed criterion of efficiency. Based on the results of modeling a traction engine with an optimal fan, it was established that the largest overheating is observed in the frontal part of the stator winding. The temperature is 139.6 °C at second 3363 from starting the motion and it does not exceed a permissible value of 140 °C.

Author Biographies

Borys Liubarskyi, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of electrical transport and diesel locomotive

Оleksandr Petrenko, O. M. Beketov National University of Urban Economy in Kharkiv Marshal Bazhanov str., 17, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of electrical transport 

Dmytro Iakunin, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of electrical transport and diesel locomotive

Oksana Dubinina, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Pedagogical Sciences, PhD, Associate Professor

Department of computer mathematics and data analysis

References

  1. Liubarskyi, B. G. (2015). Ratsionalni shvydkisni rezhymy rukhu prymiskogo elektropoizdu z asynkhronnymy tiagovymy dvygunamy. Visnyk Natsionalnogo tekhnichnogo universytetu "Kharkivskyi politekhnichnyi Instytut", 8 (1127), 86–92.
  2. Mizuno, S., Noda, S., Matsushita, M., Koyama, T., Shiraishi, S. (2013). Development of a Totally Enclosed Fan-Cooled Traction Motor. IEEE Transactions on Industry Applications, 49 (4), 1508–1514. doi: 10.1109/tia.2013.2256872
  3. Nakahama, T., Suzuki, K., Hashidume, S., Ishibashi, F., Hirata, M. (2006). Cooling Airflow in Unidirectional Ventilated Open-Type Motor for Electric Vehicles. IEEE Transactions on Energy Conversion, 21 (3), 645–651. doi: 10.1109/tec.2006.877364
  4. Cuiping, L., Yulong, P., Ronggang, N., Shukang, C. (2011). Analysis of 3D static temperature field of water cooling induction motor in mini electric vehicle. 2011 International Conference on Electrical Machines and Systems. doi: 10.1109/icems.2011.6073618
  5. Nakahama, T., Biswas, D., Kawano, K., Ishibashi, F. (2006). Improved Cooling Performance of Large Motors Using Fans. IEEE Transactions on Energy Conversion, 21 (2), 324–331. doi: 10.1109/tec.2006.874245
  6. Boglietti, A., Cavagnino, A., Staton, D., Shanel, M., Mueller, M., Mejuto, C. (2009). Evolution and Modern Approaches for Thermal Analysis of Electrical Machines. IEEE Transactions on Industrial Electronics, 56 (3), 871–882. doi: 10.1109/tie.2008.2011622
  7. Jinxin, F., Chengning, Z., Zhifu, W., Strangas, E. G. (2010). Thermal analysis of water cooled surface mount permanent magnet electric motor for electric vehicle. International Conference on Electrical Machines and Systems (ICEMS).
  8. Huang, Z., Nategh, S., Lassila, V., Alakula, M., Yuan, J. (2012). Direct oil cooling of traction motors in hybrid drives. 2012 IEEE International Electric Vehicle Conference. doi: 10.1109/ievc.2012.6183163
  9. Desale, R., Deshmukh, N. K. (2006). Prediction of air delivery, noise, and power consumption of fan for TEFC electric motors. J. Sci. Ind. Res., 65, 344–348.
  10. Rama Krishna, S., Rama Krishna, A., Ramji, K. (2011). Reduction of motor fan noise using CFD and CAA simulations. Applied Acoustics, 72 (12), 982–992. doi: 10.1016/j.apacoust.2011.06.008
  11. Kondo, M., Miyabe, M., Manabe, S. (2014). Development of a High Efficiency Induction Motor and the Estimation of Energy Conservation Effect. Quarterly Report of RTRI, 55 (3), 138–143. doi: 10.2219/rtriqr.55.138
  12. Kondo, M. (2009). Energy-Saving Effect of High Efficient Traction Motors in Electric Train. RTRI Report, 23 (11), 29–34.
  13. Nikovski, D., Lidicky, B., Zhang, W., Kataoka, K., Yoshimoto, K. (2012). Markov decision processes for train run curve optimization. 2012 Electrical Systems for Aircraft, Railway and Ship Propulsion. doi: 10.1109/esars.2012.6387473
  14. Ma, Y. (2008). Dynamic programming and the HJB equation. Optimal Control Lecture Notes, 121–149.
  15. Xie, M. Q., Nie, L. (2009). Research on Periodic Train Working Diagram Model. Journal of China Railway Society, 31, 7–13.
  16. Cezario, C. A., Silva, H. P. (2010). Electric motor winding temperature prediction using a simple two‐resistance thermal circuit. COMPEL – The international journal for computation and mathematics in electrical and electronic engineering, 29 (5), 1325–1330. doi: 10.1109/icelmach.2008.4800135
  17. Santos, S., Antunes, C. (2012). CFD and Thermography Techniques Applied in Cooling Systems Designs. Applied Computational Fluid Dynamics, 135–154. doi: 10.5772/26311
  18. Ding, Y., Zhou, F., Bai, Y., Li, R. (2009). A correction model of loaded train's grade resistance calculation. 5th Advanced Forum on Transportation of China (AFTC 2009). doi: 10.1049/cp.2009.1626
  19. Mou, W. T., Dong, Y. (2010). Train Operation Adjustment Model and Three Swarms Cooperative Particle Swarm Optimization Algorithm Research. Railway Operation Technology Journal, 16, 13–15.
  20. Liubarskyi, B. G. (2014). Optimizatsiya rezhimov rabotyi tyagovogo asinhronnogo privoda. Elektrika, 6, 5–10.
  21. Petrenko, O. M., Domanskyi, I. V., Liubarskyi, B. G. (2016). Metodika optimizatsiyi rezhimiv roboti asinhronnogo tyagovogo privodu ruhomogo skladu. Mekhanika ta mashynobuduvannia, 1, 59–67.
  22. Severin, V. P. (2009). Vektornaia optimizatsiia system avtomaticheskogo upravleniia geneticheskimi algoritmami. Tekhnicheskaia elektrodinamika. Silovaia elektronika i energoeffektivnost, 80–85.
  23. Afanasov, A. M. (2014). Opredelenie magnitnyx poter v tiagovyx dvigateliah elektropodvizhnogo sostava magistralnogo i promyshlennogo transporta. Zbir. nauk. prats' Donets'koho instytutu zaliznychnoho transportu, 39, 71–77.
  24. General Considerations for IGBT and IPM. Mitsubishi Application Notes. Available at: http://www.mitsubishielectric.com/semiconductors/files/manuals/powermos3_0.pdf
  25. Ivahno, V. V., Zamaruev, V. V., Ilina, O. V. (2014). Vybor i raschet silovykh poluprovodnikovykh priborov poluprovodnikovogo preobrazovatelia elektricheskoi energii. Kharkiv: NTU «KhPI», 72.
  26. Kappen, H. J. (2011). Optimal control theory and the linear Bellman equation. Bayesian Time Series Models, 363–387. doi: 10.1017/cbo9780511984679.018
  27. Petrenko, O. M. (2017). Optymizatsyia parametriv ventyliatora asynkhronnogo tiagovogo dvyguna tramvainogo vagonu. Systemy upravlinnia, navigatsii ta zviazku, 1, 64–68.
  28. Petrenko, O. M., Liubarskyi, B. G., Glebova, M. L. (2017). Matematychna model teplovogo stanu tiagovykh asynkhronnykh dvyguniv tramvainykh vagoniv. Systemy upravlinnia, navigatsii ta zviazku, 2, 46–50.
  29. Petrushin, V. S., Yakimets, A. M., Kalenik, O. V. (2008). Osobennosti teplovyih raschetov neustanovivshihsya rezhimov rabotyi reguliruemyih asinhronnyih dvigateley. Elektromashinostroenie i elektrooborudovanie, 71, 47–51.

Downloads

Published

2017-06-15

How to Cite

Liubarskyi, B., Petrenko О., Iakunin, D., & Dubinina, O. (2017). Optimization of thermal modes and cooling systems of the induction traction engines of trams. Eastern-European Journal of Enterprise Technologies, 3(9 (87), 59–67. https://doi.org/10.15587/1729-4061.2017.102236

Issue

Section

Information and controlling system