Study of the free surface energy of epoxy composites using an automated measurement system

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.120998

Keywords:

free surface energy, automated measurement system, epoxy composite, rutile

Abstract

Results of development of the automated measurement system (AMS) for determining contact wetting angles and calculations of components of free surface energy (FSE) of solid surfaces by the Van Oss-Chaudhury-Good method were presented. It was shown that AMS allows for calculations based on experimental measurement of geometrical parameters of a lying drop on the surface and energy characteristics of test fluids. It was found that the measured contact wetting angles and calculated values of FSE components of surfaces of epoxy polymer composites, steel and glass are adequate and reliable.

Based on the conducted measurements and calculations, relationship between FSE, the structure and properties of epoxy polymer composites, filled with rutile, was established. In the course of research that was conducted using AMS, it was found that at an increase of the content of rutile, total FSE (γs), dispersive (γd) and acidic-basic (γab) components of composites increase. Dependences γs and γd on the filler’s content are extreme in character, and γab increases and does not change at a subsequent increase in the amount of rutile. The influence of rutile is represented most vividly by dependences of the acidic (γa) and basic (γb) components, into which the polar (acidic-basic) FSE component γab is disintegrated. It was found that structural transformations are associated with the acidic-basic mechanism of intermolecular and inter-phase interactions in epoxy compositions

Author Biographies

Yuliya Danchenko, Kharkiv National University of Civil Engineering and Architecture Sumska str., 40, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of General Chemistry

 

Vladimir Andronov, National University of Civil Protection of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Professor

Research Center

Mykhailo Teslenko, Kharkiv National University of Civil Engineering and Architecture Sumska str., 40, Kharkiv, Ukraine, 61002

Postgraduate student

Department of automation of manufacturing processes

Viacheslav Permiakov, Kharkiv National University of Civil Engineering and Architecture Sumska str., 40, Kharkiv, Ukraine, 61002

PhD, Professor

Department of automation of manufacturing processes

Evgeniy Rybka, National University of Civil Protection of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD

Research Center

Ruslan Meleshchenko, National University of Civil Protection of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD

Department of fire and rescue training

Anatoliy Kosse, National University of Civil Protection of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Associate Professor

Department of Fire Prevention in Settlements

References

  1. Stamm, M. (2008). Polymer surfaces and interfaces: characterization, modification and applications. Springer, 324. doi: 10.1007/978-3-540-73865-7
  2. Bracco, G., Holst, B. (Eds.) (2013). Surface science techniques. Vol. 51. Springer Series in Surface Sciences. doi: 10.1007/978-3-642-34243-1
  3. Barabash, E. S., Popov, Yu. V., Danchenko, Yu. M. (2015). Vliyanie modifitsiruyushchih dobavok na adgezionnuyu sposobnost' epoksiaminnyh svyazuyushchih k alyumoborsilikatnomu steklu i stali. Naukovyi visnyk budivnytstva, 4, 122–128.
  4. Starostina, I. A., Stoyanov, O. V. (2010). Kislotno-osnovnye vzaimodeystviya i adgeziya v metall-polimernyh sistemah. Kazan': Izd-vo Kazan. gos. Tekhnol. un-ta, 200.
  5. Stroganov, V. F., Stroganov, I. V., Ahmetshin, A. S., Stoyanov, O. V., Starostina, I. A. (2010). Epoksipolimernye adgezionnye praymery v antikorrozionnoy izolyatsii truboprovodov. Izvestiya KGASU, 1, 342–346.
  6. Danchenko, Yu. M., Popov, Yu. V., Barabash, O. S. (2016). Vplyv kyslotno-osnovnykh vlastyvostei poverkhni poli mineralnykh napovniuvachiv na strukturu ta kharakterystyky epoksykompozytiv. Voprosy himii i himicheskoy tekhnologii, 3 (107), 53–60.
  7. Yashchenko, L. N. (2017). Svoystva polisiloksansoderzhashchih epoksiuretanovyh nanokompozitov angidridnogo otverzhdeniya. Ukrainskiy himicheskiy zhurnal, 83 (4), 73–80.
  8. Li, F.-Z., Lu, Z.-L., Yang, Z.-H., Qi, K. (2015). Surface interaction energy simulation of ceramic materials with epoxy resin. Polimery, 60 (07/08), 468–471. doi: 10.14314/polimery.2015.468
  9. Danchenko, Yu. M. (2017). Regulation of free surface energy of epoxy polymer materials using mineral fillers. Polymer materials and technologies, 3 (2), 56–63.
  10. Zapata-Massot, C., Le Bolay, N. (2007). Effect of the Mineral Filler on the Surface Properties of Co-Ground Polymeric Composites. Particle & Particle Systems Characterization, 24 (4-5), 339–344. doi: 10.1002/ppsc.200701136
  11. Park, S.-J., Kim, J.-S., Rhee, K.-Y., Min, B.-G. (2001). Filler-elastomer interactions: surface and mechanical interfacial properties of chemical surface treated silica/rubber composites. Mater. Phys. Mech., 4, 81–84.
  12. Zenkiewicz, M. (2007). Methods for the calculation of surface free energy of solids. Journal of Achievements in Materials and Manufacturing Engineering, 24 (1), 137–145.
  13. Żenkiewicz, M. (2007). Comparative study on the surface free energy of a solid calculated by different methods. Polymer Testing, 26 (1), 14–19. doi: 10.1016/j.polymertesting.2006.08.005
  14. Hejda, F., Solar, P., Kousal, J. (2010). Surface free energy determination by contact angle measurements – a comparison of various approaches. P. III. WDS’10 Proceeding of Contributed Papers, 25–30.
  15. Carré, A. (2007). Polar interactions at liquid/polymer interfaces. Journal of Adhesion Science and Technology, 21 (10), 961–981. doi: 10.1163/156856107781393875
  16. Metody issledovaniya sovremennyh polimernyh materialov (2012). Nizhniy Novgorod: Nizhegorodskiy gosuniversitet, 90.
  17. Foss, L. E., Fahretdinov, P. S., Romanov, G. V., Bogdanova, S. A. (2011). Vliyanie ammonievyh soedineniy s kislorod- i serosoderzhashchimi fragmentami na gidrofilizatsiyu epoksidnogo polimera. Vestnik Kazanskogo tekhnol. universiteta, 7, 132–136.
  18. Sviderskiy, V. A., Mironyuk, A. V., Pridatko, A. V., Sivolapov, P. V. (2017). Aspects of polymer surfaces wetting. Eastern-European Journal of Enterprise Technologies, 6 (1 (64)), 23–26. doi: 10.15587/1729-4061.2014.20797
  19. Yakavets, N. V., Krut’ko, N. P., Opanasenko, O. N. (2012). Determination of surface free energy of powdery resin-asphaltene substances by Owens-Wendt-Rabel-Kaelble method. Sviridov readings, 8, 253–260.
  20. Bogdanova Yu. G., Dolzhikova V. D., Tsvetkova D. S., Karzov I. M., Alent'ev A. Yu. (2011). Kraevye ugly smachivaniya kak indikatory struktury poverhnostey polimerov. Zhurnal strukturnoy himii, 52 (6), 1224–1231.
  21. Badanova, A. K., Taussarova, B. R., Kutzhanova, A. Z. (2014). Hydrophobic finishing of cellulosic textile material. World Applied Science Journal, 30 (10), 1409–1416.
  22. Danchenko, Yu., Andronov, V., Barabash, E., Obigenko, T., Rybka, E., Meleshchenko, R., Romin, A. (2017). Research of the intermolecular interactions and structure in epoxyamine composites with dispersed oxides. Eastern-European Journal of Enterprise Technologies, 6 (12 (90)), 4–12. doi: 10.15587/1729-4061.2017.118565
  23. Danchenko, Y., Andronov, V., Kariev, A., Lebedev, V., Rybka, E., Meleshchenko, R., Yavorska, D. (2017). Research into surface properties of disperse fillers based on plant raw materials. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 20–26. doi: 10.15587/1729-4061.2017.111350
  24. Danchenko, Yu. M., Kachomanova, M. P. (2016). Kompleksna otsinka kyslotno-osnovnykh vlastyvostei poverkhni dyspersnykh oksydnykh napovniuvachiv. Naukovyi visnyk budivnytstva, 86 (4), 164–172.
  25. Terpilowski, K. (2015). Influence of the ambient temperature on water and diiodomethane contact angle with quartz surface. Annales UMCS, Chemia, LXX (1), 125–136. doi: 10.1515/umcschem-2015-0009
  26. Zinina, I. N., Pimanov, M. V. (2011). Vliyanie poverhnostnoy energii metallicheskih obraztsov na prochnost' kleevyh soedineniy. Izvestiya MGTU «MAMI», 2 (12), 127–130.
  27. Cherkasova, N. G., Mokienko, R. L., Mihaylova, O. I. (2002). Issledovanie vliyaniya sostava i rezhima otverzhdeniya na poverhnostnuyu energiyu epoksipolimera. Voprosy himii i himicheskoy tekhnologii, 3, 241–244.
  28. Park, J.-J., Yoon, K.-G., Lee, J.-Y. (2011). Thermal and Mechanical Properties of Epoxy/Micro- and Nano- Mixed Silica Composites for Insulation Materials of Heavy Electric Equipment. Transactions on Electrical and Electronic Materials, 12 (3), 98–101. doi: 10.4313/teem.2011.12.3.98
  29. Tarrío-Saavedra, J., López-Beceiro, J., Naya, S., Artiaga, R. (2008). Effect of silica content on thermal stability of fumed silica/epoxy composites. Polymer Degradation and Stability, 93 (12), 2133–2137. doi: 10.1016/j.polymdegradstab.2008.08.006
  30. Miller, C. M. (2010). Adhesion and the surface energy components of natural minerals and aggregates. Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirement for the degree of Master of Science, 218.
  31. Danchenko, Y., Andronov, V., Rybka, E., Skliarov, S. (2017). Investigation into acid­basic equilibrium on the surface of oxides with various chemical nature. Eastern-European Journal of Enterprise Technologies, 4 (12 (88)), 17–25. doi: 10.15587/1729-4061.2017.108946
  32. Danchenko, Yu. M. (2017). Strukturirovanie epoksidnoy smoly v prisutstvii neinogennogo poverhnostno-aktivnogo veshchestva. Budivelni materialy ta vyroby, 5-6, 26–28.
  33. Leonova, N. G., Mihal'chuk, V. M., Beloshenko, V. A. (2011). Ustoychivost' k termookislitel'noy destruktsii epoksi-kremnezemnyh kompozitov kationnoy polimerizatsii. Naukovi pratsi Donetskoho natsionalnoho tekhnichnoho universytetu, 17, 86–92.
  34. Shtompel, V. I., Demchenko, V. L., Vilenskyi, V. O., Kercha, Yu. Yu. (2008). Mikroheterohenna struktura kompozytiv na osnovi epoksydnoi smoly ta oksydu Fe(III) abo Al(III). Polimernyi zhurnal, 30 (3), 233–238.
  35. Talalay, A. V., Grigorenko, T. I., Burmistr, M. V., Kochergin, Yu. S. (2007). Issledovanie molotogo karbonata kal'tsiya v sostave epoksidnyh kompozitsiy. Voprosy himii i himicheskoy tekhnologii, 1, 121–123.
  36. Sitnikov, P. A., Ryabkov, Yu. I., Belyh, A. G., Vaseneva, I. N., Kuchin, A. V. (2016). Fiziko-himicheskie zakonomernosti sozdaniya novyh gibridnyh epoksipolimernyh nanokompozitov s povyshennymi prochnostnymi harakteristikami. Izvestiya Komi nauchnogo tsentra UrO RAN, 1 (25), 18–22.

Downloads

Published

2018-01-15

How to Cite

Danchenko, Y., Andronov, V., Teslenko, M., Permiakov, V., Rybka, E., Meleshchenko, R., & Kosse, A. (2018). Study of the free surface energy of epoxy composites using an automated measurement system. Eastern-European Journal of Enterprise Technologies, 1(12 (91), 9–17. https://doi.org/10.15587/1729-4061.2018.120998

Issue

Section

Materials Science