DOI: https://doi.org/10.15587/1729-4061.2018.128495

Development of principles and methods for calculation of direct current hybrid contactors

Anatoly Soskov, Nataliya Sabalaeva, Yana Forkun, Marina Glebova

Abstract


The study showed that we can implement the principle of current control of the main circuit of a hybrid DC contactor by introduction of a small-size transformer of current into it. It has two primary windings, the first of which is connected to the first pole in succession with the main contact, the second one ‒ in series with a semiconductor switch, which shunts this contact in opposition to the first, and one secondary power supply.

The study determined peculiarities of the processes of current flowing from the circuit of the main contacts, the commutation of a current transformer, the charging of a commutation condenser for locking of a semiconductor switch. The study showed that a magnetic wire conductor of a transformer is saturated and a control circuit is deenergized in a switched-on state. When a contactor is switched off, the charge of a commutation condenser capacitor goes due to a direct current under an action of EMF, which occurs on the secondary winding of a transformer during its re-magnetization in the opposite direction by current flowing in a shunting circuit. At the same time, at the given values of a cross section of a magnetic conductor and capacity of a condenser, a voltage level to which it is charged, does not depend on the number of turns of the secondary winding, but it is proportional to a square root of commutated current. The time of its charge under the same conditions is proportional to the number of turns of the secondary winding. This makes it possible to approach reasonably definition of parameters of elements that provide reliable locking of semiconductor switchers.

The study showed that the proposed hybrid contactors, due to introduction of circuit current control, have properties that enhance their competitiveness compared to the existing ones. Specifically, they increased reliability, they do not need a power supply from an additional power source, they exclude standard drivers, they show minimized energy consumption. Thus, the application aspect of a use of the obtained scientific result is the possibility of creation of competitive reliable hybrid DC contactors for voltage up to 1,000 V and currents of 100‒630 A

Keywords


hybrid contactor; main contacts; semiconductor switch; current transformer; current control

Full Text:

PDF

References


Soskov, A. H., Sabalaieva, N. O. (2012). Hibrydni kontaktory nyzkoi napruhy z pokrashchenymy tekhniko-ekonomichnymy kharakterystykamy. Kharkiv, 268.

Voronin, P. A. (2005). Silovye poluprovodnikovye klyuchi: semeystva, harakteristiki, primenenie. Moscow, 384.

Sato, Y., Tobayashi, S., Tanaka, Y., Fukui, A., Yamasaki, M., Ohashi, H. (2010). An investigation of SiC-SIT DC circuit breakers for higher voltage direct current distribution systems. 2010 IEEE Energy Conversion Congress and Exposition. doi: 10.1109/ecce.2010.5617760

Chung, Y.-H. (2003). Pat. No. US7079363B2. Hybrid DC electromagnetic contactor. No. 10/404061; declareted: 02.04.2003; published: 18.07.2006.

Belisle, F. C., Carter, E. A. Metzler, M. W., Wavering, J. T. (2006). Pat. No. US7538990B2. High voltage contactor hybrid without a DC arc break. Int. Cl. H02H 3/00, H02H 7/00. No. 11/638984; declareted: 14.12.2006; published: 26.05.2009.

Bhavaraju, V., Zhao, T., Theisen, P. J. (2011). Pat. No. 8638531В2 USA. Hybrid bi-directional DC contactor and method of controlling thereof. Int. Cl. H02H 3/00, H02H 7/00. No. US13/325174; declareted: 14.12.2011; published: 28.01.2014.

Vatkina, M. A., Grigor'ev, A. A. (2013). Perspektivy razvitiya nizkovol'tnyh kommutacionnyh gibridnyh apparatov novogo pokoleniya na osnove principa gibridnoy kommutacii. Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I. Ya. Yakovleva, 4 (80), 46–55.

Vatkina, M. A., Grigor'ev, A. A. (2014). Optimal'niy sintez fizicheskih yavleniy i processov kommutacii nizkovol'tnyh gibridnyh apparatov. Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I. Ya. Yakovleva, 4 (84), 4–14.

Qi, L., Zhang, G., Liu, J., Qin, Z., Geng, Y., Wang, J. (2017). Research on integrated design of vacuum switch based on permanent magnetic actuator for hybrid DC contactor. 2017 4th International Conference on Electric Power Equipment – Switching Technology (ICEPE-ST). doi: 10.1109/icepe-st.2017.8188887

Bingjian, Y., Yang, G., Xiaoguang, W., Zhiyuan, H., Longlong, C., Yunhai, S. (2015). A hybrid circuit breaker for DC-application. 2015 IEEE First International Conference on DC Microgrids (ICDCM). doi: 10.1109/icdcm.2015.7152036

Hassanpoor, A., Hafner, J., Jacobson, B. (2015). Technical Assessment of Load Commutation Switch in Hybrid HVDC Breaker. IEEE Transactions on Power Electronics, 30 (10), 5393–5400. doi: 10.1109/ipec.2014.6870025

Soskov, A. H., Soskova, I. O., Sabalaieva, N. O., Dorokhov, O. V. (2011). Pat. No. 63999 UA. Hibrydnyi dvopoliusnyi kontaktor postiynoho strumu. MPK N01N 9/00. No. u201104155; declareted: 06.04.2011; published: 25.10.2011, Bul. No. 20.

Soskov, A. H., Soskova, I. O., Sabalaieva, N. O. (2014). Pat. No. 94860 UA. Hibrydnyi dvopoliusnyi elektromahnitnyi kontaktor postiynoho strumu. MPK N01N 9/00. No. u201404205; declareted: 18.04.2014; published: 10.12.2014, Bul. No. 23.

Uil'yams, B. (1993). Silovaya elektronika: pribory, primenenie, upravlenie. Moscow, 462.

Zeveke, G. V., Ionkin, P. A., Netushil, A. V., Strahov, S. V. (1990). Osnovy teorii cepey. Moscow, 528.

Soskov, A., Sabalaeva, N., Glebova, M., Forkun, Y. (2016). Methods of overvoltage limitation in modern dc semiconductor switching apparatus and their calculation. Eastern-European Journal of Enterprise Technologies, 3 (8 (81)), 4–9. doi: 10.15587/1729-4061.2016.72533


GOST Style Citations


Soskov A. H., Sabalaieva N. O. Hibrydni kontaktory nyzkoi napruhy z pokrashchenymy tekhniko-ekonomichnymy kharakterystykamy: monohrafiya. Kharkiv, 2012. 268 p.

Voronin P. A. Silovye poluprovodnikovye klyuchi: semeystva, harakteristiki, primenenie. izd. 2-e, pererab. i dop. Moscow, 2005. 384 p.

An investigation of SiC-SIT DC circuit breakers for higher voltage direct current distribution systems / Sato Y., Tobayashi S., Tanaka Y., Fukui A., Yamasaki M., Ohashi H. // 2010 IEEE Energy Conversion Congress and Exposition. 2010. doi: 10.1109/ecce.2010.5617760 

Chung Y.-H. Hybrid DC electromagnetic contactor: Pat. No. US7079363B2. No. 10/404061; declareted: 02.04.2003; published: 18.07.2006.

High voltage contactor hybrid without a DC arc break: Pat. No. US7538990B2. Int. Cl. H02H 3/00, H02H 7/00 / Belisle F. C., Carter E. A. Metzler M. W., Wavering J. T. No. 11/638984; declareted: 14.12.2006; published: 26.05.2009.

Bhavaraju V., Zhao T., Theisen P. J. Hybrid bi-directional DC contactor and method of controlling thereof: Pat. No. 8638531В2 USA. Int. Cl. H02H 3/00, H02H 7/00. No. US13/325174; declareted: 14.12.2011; published: 28.01.2014.

Vatkina M. A., Grigor'ev A. A. Perspektivy razvitiya nizkovol'tnyh kommutacionnyh gibridnyh apparatov novogo pokoleniya na osnove principa gibridnoy kommutacii // Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I. Ya. Yakovleva. 2013. Issue 4 (80). P. 46–55.

Vatkina M. A., Grigor'ev A. A. Optimal'niy sintez fizicheskih yavleniy i processov kommutacii nizkovol'tnyh gibridnyh apparatov // Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I. Ya. Yakovleva. 2014. Issue 4 (84). P. 4–14.

Research on integrated design of vacuum switch based on permanent magnetic actuator for hybrid DC contactor / Qi L., Zhang G., Liu J., Qin Z., Geng Y., Wang J. // 2017 4th International Conference on Electric Power Equipment – Switching Technology (ICEPE-ST). 2017. doi: 10.1109/icepe-st.2017.8188887 

A hybrid circuit breaker for DC-application / Bingjian Y., Yang G., Xiaoguang W., Zhiyuan H., Longlong C., Yunhai S. // 2015 IEEE First International Conference on DC Microgrids (ICDCM). 2015. doi: 10.1109/icdcm.2015.7152036 

Hassanpoor A., Hafner J., Jacobson B. Technical Assessment of Load Commutation Switch in Hybrid HVDC Breaker // IEEE Transactions on Power Electronics. 2015. Vol. 30, Issue 10. P. 5393–5400. doi: 10.1109/ipec.2014.6870025 

Hibrydnyi dvopoliusnyi kontaktor postiynoho strumu: Pat. No. 63999 UA. MPK N01N 9/00 / Soskov A. H., Soskova I. O., Sabalaieva N. O., Dorokhov O. V.; zaiavnyk ta patentovlasnyk Ukrainska inzhenerno-pedahohichna akademiya, Kharkivskyi natsionalnyi universytet miskoho hospodarstva imeni O. M. Beketova. No. u201104155; declareted: 06.04.2011; published: 25.10.2011, Bul. No. 20.

Soskov A. H., Soskova I. O., Sabalaieva N. O. Hibrydnyi dvopoliusnyi elektromahnitnyi kontaktor postiynoho strumu: Pat. No. 94860 UA. MPK N01N 9/00 / zaiavnyk ta patentovlasnyk Ukrainska inzhenerno-pedahohichna akademiya, Kharkivskyi natsionalnyi universytet miskoho hospodarstva imeni O. M. Beketova. No. u201404205; declareted: 18.04.2014; published: 10.12.2014, Bul. No. 23.

Uil'yams B. Silovaya elektronika: pribory, primenenie, upravlenie: sprav. pos. Moscow, 1993. 462 p.

Osnovy teorii cepey: ucheb. / Zeveke G. V., Ionkin P. A., Netushil A. V., Strahov S. V. izd. 5-oe pererab. i dop. Moscow, 1990. 528 p.

Methods of overvoltage limitation in modern dc semiconductor switching apparatus and their calculation / Soskov A., Sabalaeva N., Glebova M., Forkun Y. // Eastern-European Journal of Enterprise Technologies. 2016. Vol. 3, Issue 8 (81). P. 4–9. doi: 10.15587/1729-4061.2016.72533 







Copyright (c) 2018 Anatoly Soskov, Nataliya Sabalaeva, Yana Forkun, Marina Glebova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061