DOI: https://doi.org/10.15587/1729-4061.2018.129914

Enrichment on Bangka tin slag’s tantalum and niobium oxide contents through non-fluoride process

Sulaksana Permana, Shiva Frida Vincia, Anggita Amilia, Ahmad Maksum, Kurnia Setiawan Widana, Johny Wahyuadi Soedarsono

Abstract


This research explored how non-fluoride solutions including 8M NaOH, 0.8, 1.6 and 2.4 M H2SO4, and 0.1, 0.4 and 0.8 M HClO4 increased the contents of tantalum and niobium oxide through leaching. Before leaching, Bangka tin slag (BTS) was characterized through XRF. The slag was then 900⁰C-roasted, quenched, and dewatered. Next, BTS underwent a sieving process with size classifications of +100, -100+150, -150+200, -200+250, and -250 mesh. After that, the -200+250 mesh slag was leached with 8M NaOH. Then, the leached product was divided into two, one of which was 0.1, 0.4, and 0.8 M HClO4-leached and the rest of which was leached with 0.8 M HClO4 followed by 0, 0.8, 1.6, and 2.4 M H2SO4 at 25⁰C within 2 hours. All the residues characterization used an XRF while that of filtrates used an AAS as well as an ICP-OES. The motives that drive this investigation are the deficit of tantalum supply and its status as one of the technology-critical elements. In addition to that, most of prior investigations enhanced the contents of tantalum and niobium oxide using fluoride acid while this study ventured non-fluoride solutions. The result shows that perchlorate acid followed by sulfuric acid leaching slightly enriches the tantalum and niobium contents. However, this method is the most effective among NaOH, HCIO4, and HCIO4 followed by H2SO4 leaching. This finding is a form of scientific effort to maintain the tantalum supply through utilizing worthless waste of tin smelting


Keywords


leaching; tantalum niobium oxide (TNO); Bangka tin slag; NaOH; HClO4

Full Text:

PDF

References


Filella, M. (2017). Tantalum in the environment. Earth-Science Reviews, 173, 122–140. doi: https://doi.org/10.1016/j.earscirev.2017.07.002

Mancheri, N. A., Sprecher, B., Deetman, S., Young, S. B., Bleischwitz, R., Dong, L. et. al. (2018). Resilience in the tantalum supply chain. Resources, Conservation and Recycling, 129, 56–69. doi: https://doi.org/10.1016/j.resconrec.2017.10.018

Peiró, L. T., Méndez, G. V., Ayres, R. U. (2013). Material Flow Analysis of Scarce Metals: Sources, Functions, End-Uses and Aspects for Future Supply. Environmental Science & Technology, 47 (6), 2939–2947. doi: https://doi.org/10.1021/es301519c

Stratton, P. (2013). Outlook for The Global Tantalum Market. International Tin & Tantalum Seminar.

Ma, N., Houser, J. B. (2014). Recycling of steelmaking slag fines by weak magnetic separation coupled with selective particle size screening. Journal of Cleaner Production, 82, 221–231. doi: https://doi.org/10.1016/j.jclepro.2014.06.092

Piatak, N. M. (2018). Environmental Characteristics and Utilization Potential of Metallurgical Slag. Environmental Geochemistry: Site Characterization, Data Analysis and Case Histories, 487–519. doi: https://doi.org/10.1016/b978-0-444-63763-5.00020-3

Soedarsono, J., Burgard, M., Asfari, Z., Vicens, J. (1993). Liquid-liquid Extraction of Rare Earth (III) Ions by 25,27-dicarboxy-26,28-dimethoxy-5,11,17,23- tetra- tert-butylcalix[4] arene. XVII International Symposium on Macrocyclic Chemistry.

Soedarsono, J., Hagège, A., Burgard, M., Asfari, Z., Vicens, J. (1996). Liquid-Liquid Extraction of Rare Earth Metals Using 25,27-Dicarboxy-26,28-Dimethoxy-5,11,17,23-Tetra-tert-Butylcalix[4]Arene. Berichte der Bunsengesellschaft für physikalische Chemie, 100 (4), 477–481. doi: https://doi.org/10.1002/bbpc.19961000412

Permana, S., Soedarsono, J. W., Rustandi, A., Maksum, A. (2016). Other Oxides Pre-removed from Bangka Tin Slag to Produce a High Grade Tantalum and Niobium Oxides Concentrate. IOP Conference Series: Materials Science and Engineering, 131, 012006. doi: https://doi.org/10.1088/1757-899x/131/1/012006

Odo, J. U., Okafor, W. C., Ekpe, S. O., Nwogbu, C. C. (2014). Extraction of niobium from tin slag. International Journal of Scientific and Research Publications, 4 (11), 1–7.

Gaballah, I., Allain, E., Meyer-Joly, M.-C., Malau, K. (1992). A possible method for the characterization of amorphous slags: Recovery of refractory metal oxides from tin slags. Metallurgical and Materials Transactions B, 23 (3), 249–259. doi: https://doi.org/10.1007/bf02656280

Köck, W., Paschen, P. (1989). Tantalum – processing, properties and applications. JOM, 41 (10), 33–39. doi: https://doi.org/10.1007/bf03220360

Bunnakkha, C., Jarupisitthorn, C. (2012). Extraction of Tin from Hardhead by Oxidation and Fusion with Sodium Hydroxide. Journal of Metals, Materials and Minerals, 22 (1), 1–6.

Subramanian, C., Suri, A. K. (1998). Recovery of Niobium and Tantalum from Low Grade Tin Slag – A Hydrometallurgical Approach. Environmental & Waste Management in NoN-Ferrous Metallurgical Industries, 100–107.

Soedarsono, J. W., Permana, S., Hutauruk, J. K., Adhyputra, R., Rustandi, A., Maksum, A. et. al. (2018). Upgrading tantalum and niobium oxides content in Bangka tin slag with double leaching. IOP Conference Series: Materials Science and Engineering, 316, 012052. doi: https://doi.org/10.1088/1757-899x/316/1/012052

Gaballah, I., Allain, E. (1994). Recycling of strategic metals from industrial slag by a hydro-and pyrometallurgical process. Resources, Conservation and Recycling, 10 (1-2), 75–85. doi: https://doi.org/10.1016/0921-3449(94)90040-x

Gaballah, I., Allain, E., Djona, M. (1997). Extraction of tantalum and niobium from tin slags by chlorination and carbochlorination. Metallurgical and Materials Transactions B, 28 (3), 359–369. doi: https://doi.org/10.1007/s11663-997-0102-7

Brocchi, E. A., Moura, F. J. (2008). Chlorination methods applied to recover refractory metals from tin slags. Minerals Engineering, 21 (2), 150–156. doi: https://doi.org/10.1016/j.mineng.2007.08.011

Majid, R. A., Rustandi, A., Permana, S. (2018). Simulation of Tantalum and Niobium Pentoxides Extraction from Bangka Tin Slag Waste. Advanced Science Letters, 24 (1), 767–772. doi: https://doi.org/10.1166/asl.2018.11811

Permana, S., Rustandi, A., Majid, R. A. (2017). Thermodynamic analysis with software: a case study of upgrading rare earth elements content in Bangka tin slag. Far East Journal of Electronics and Communications, 17 (5), 1211–1220. doi: https://doi.org/10.17654/ec017051211


GOST Style Citations


Filella M. Tantalum in the environment // Earth-Science Reviews. 2017. Vol. 173. P. 122–140. doi: https://doi.org/10.1016/j.earscirev.2017.07.002 

Resilience in the tantalum supply chain / Mancheri N. A., Sprecher B., Deetman S., Young S. B., Bleischwitz R., Dong L. et. al. // Resources, Conservation and Recycling. 2018. Vol. 129. P. 56–69. doi: https://doi.org/10.1016/j.resconrec.2017.10.018 

Peiró L. T., Méndez G. V., Ayres R. U. Material Flow Analysis of Scarce Metals: Sources, Functions, End-Uses and Aspects for Future Supply // Environmental Science & Technology. 2013. Vol. 47, Issue 6. P. 2939–2947. doi: https://doi.org/10.1021/es301519c 

Stratton P. Outlook for The Global Tantalum Market. International Tin & Tantalum Seminar, 2013.

Ma N., Houser J. B. Recycling of steelmaking slag fines by weak magnetic separation coupled with selective particle size screening // Journal of Cleaner Production. 2014. Vol. 82. P. 221–231. doi: https://doi.org/10.1016/j.jclepro.2014.06.092 

Piatak N. M. Environmental Characteristics and Utilization Potential of Metallurgical Slag // Environmental Geochemistry: Site Characterization, Data Analysis and Case Histories. 2018. P. 487–519. doi: https://doi.org/10.1016/b978-0-444-63763-5.00020-3 

Liquid-liquid Extraction of Rare Earth (III) Ions by 25,27-dicarboxy-26,28-dimethoxy-5,11,17,23- tetra- tert-butylcalix[4] arene / Soedarsono J., Burgard M., Asfari Z., Vicens J. // XVII International Symposium on Macrocyclic Chemistry. 1993.

Liquid-Liquid Extraction of Rare Earth Metals Using 25,27-Dicarboxy-26,28-Dimethoxy-5,11,17,23-Tetra-tert-Butylcalix[4]Arene / Soedarsono J., Hagège A., Burgard M., Asfari Z., Vicens J. // Berichte der Bunsengesellschaft für physikalische Chemie. 1996. Vol. 100, Issue 4. P. 477–481. doi: https://doi.org/10.1002/bbpc.19961000412 

Other Oxides Pre-removed from Bangka Tin Slag to Produce a High Grade Tantalum and Niobium Oxides Concentrate / Permana S., Soedarsono J. W., Rustandi A., Maksum A. // IOP Conference Series: Materials Science and Engineering. 2016. Vol. 131. P. 012006. doi: https://doi.org/10.1088/1757-899x/131/1/012006 

Extraction of niobium from tin slag / Odo J. U., Okafor W. C., Ekpe S. O., Nwogbu C. C. // International Journal of Scientific and Research Publications. 2014. Vol. 4, Issue 11. P. 1–7.

A possible method for the characterization of amorphous slags: Recovery of refractory metal oxides from tin slags / Gaballah I., Allain E., Meyer-Joly M.-C., Malau K. // Metallurgical and Materials Transactions B. 1992. Vol. 23, Issue 3. P. 249–259. doi: https://doi.org/10.1007/bf02656280 

Köck W., Paschen P. Tantalum – processing, properties and applications // JOM. 1989. Vol. 41, Issue 10. P. 33–39. doi: https://doi.org/10.1007/bf03220360 

Bunnakkha C., Jarupisitthorn C. Extraction of Tin from Hardhead by Oxidation and Fusion with Sodium Hydroxide // Journal of Metals, Materials and Minerals. 2012. Vol. 22, Issue 1. P. 1–6.

Subramanian C., Suri A. K. Recovery of Niobium and Tantalum from Low Grade Tin Slag – A Hydrometallurgical Approach // Environmental & Waste Management in NoN-Ferrous Metallurgical Industries. 1998. P. 100–107.

Upgrading tantalum and niobium oxides content in Bangka tin slag with double leaching / Soedarsono J. W., Permana S., Hutauruk J. K., Adhyputra R., Rustandi A., Maksum A. et. al. // IOP Conference Series: Materials Science and Engineering. 2018. Vol. 316. P. 012052. doi: https://doi.org/10.1088/1757-899x/316/1/012052 

Gaballah I., Allain E. Recycling of strategic metals from industrial slag by a hydro-and pyrometallurgical process // Resources, Conservation and Recycling. 1994. Vol. 10, Issue 1-2. P. 75–85. doi: https://doi.org/10.1016/0921-3449(94)90040-x 

Extraction of tantalum and niobium from tin slags by chlorination and carbochlorination // Metallurgical and Materials Transactions B. 1997. Vol. 28, Issue 3. P. 359–369. doi: https://doi.org/10.1007/s11663-997-0102-7 

Brocchi E. A., Moura F. J. Chlorination methods applied to recover refractory metals from tin slags // Minerals Engineering. 2008. Vol. 21, Issue 2. P. 150–156. doi: https://doi.org/10.1016/j.mineng.2007.08.011 

Majid R. A., Rustandi A., Permana S. Simulation of Tantalum and Niobium Pentoxides Extraction from Bangka Tin Slag Waste // Advanced Science Letters. 2018. Vol. 24, Issue 1. P. 767–772. doi: https://doi.org/10.1166/asl.2018.11811 

Permana S., Rustandi A., Majid R. A. Thermodynamic analysis with software: a case study of upgrading rare earth elements content in Bangka tin slag // Far East Journal of Electronics and Communications. 2017. Vol. 17, Issue 5. P. 1211–1220. doi: https://doi.org/10.17654/ec017051211 







Copyright (c) 2018 Sulaksana permana

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061