DOI: https://doi.org/10.15587/1729-4061.2018.140970

A study of initial stages for formation of carbon condensates on copper

Yu Dai, Igor Kolupaev, Oleg Sоbоl

Abstract


In the CVD method, samples of carbon condensates were obtained under special conditions (low substrate temperature and short growth times). The use of special technological conditions makes it possible to study the initial stages of growth of graphene layers. To analyze the influence of the microinhomogeneities of the copper substrate on growth conditions, various modes of its electrochemical polishing were used in the study. The structural state of the surface was studied using computer processing of digital images of a surface with color segmentation. A metallographic analysis of more than 70 samples was carried out and three main structural elements of the initial stage of growth of graphene layers were identified on the basis of computer image processing during condensation. These are graphene layers, sections of a copper substrate and a cluster of atoms with a structural state different from the graphene (presumably amorphous). It has been established that preparation of the substrate surface should be attributed to the most important technological operations for obtaining a high-quality graphene coating. It has been found that the use of multicomponent electrolytes during the polishing of the copper substrate makes it possible to increase the uniformity in the dimensions of the structural elements of the surface roughness. This leads to an increase in the surface area of the formation of graphene layers already during the initial stages of growth (at a relatively low process temperature of 700 °C).

The obtained results testify to the prospects of using multistage image analysis (using the clustering method) to optimize the technological regimes for obtaining the “carbon condensate/substrate” systems, taking into account the initial roughness of the latter

Keywords


carbon condensates; graphene/copper system; CVD process; optical microscopy; computer image processing; phase composition

References


Morton, B. D., Wang, H., Fleming, R. A., Zou, M. (2011). Nanoscale Surface Engineering with Deformation-Resistant Core–Shell Nanostructures. Tribology Letters, 42 (1), 51–58. doi: https://doi.org/10.1007/s11249-011-9747-0

Ivashchenko, V. I., Dub, S. N., Scrynskii, P. L., Pogrebnjak, A. D., Sobol’, O. V., Tolmacheva, G. N. et. al. (2016). Nb–Al–N thin films: Structural transition from nanocrystalline solid solution nc-(Nb,Al)N into nanocomposite nc-(Nb, Al)N/a–AlN. Journal of Superhard Materials, 38 (2), 103–113. doi: https://doi.org/10.3103/s1063457616020040

Grigoriev, S. N., Sobol, O. V., Beresnev, V. M., Serdyuk, I. V., Pogrebnyak, A. D., Kolesnikov, D. A., Nemchenko, U. S. (2014). Tribological characteristics of (TiZrHfVNbTa)N coatings applied using the vacuum arc deposition method. Journal of Friction and Wear, 35 (5), 359–364. doi: https://doi.org/10.3103/s1068366614050067

Vasyliev, M. O., Mordyuk, B. M., Sidorenko, S. I., Voloshko, S. M., Burmak, A. P., Kindrachuk, M. V. (2016). Synthesis of Deformation-Induced Nanocomposites on Aluminium D16 Alloy Surface by Ultrasonic Impact Treatment. METALLOFIZIKA I NOVEISHIE TEKHNOLOGII, 38 (4), 545–563. doi: https://doi.org/10.15407/mfint.38.04.0545

Sobol’, O. V. (2016). The influence of nonstoichiometry on elastic characteristics of metastable β-WC1–x phase in ion plasma condensates. Technical Physics Letters, 42 (9), 909–911. doi: https://doi.org/10.1134/s1063785016090108

Sobol’, O. V. (2016). Structural Engineering Vacuum-plasma Coatings Interstitial Phases. Journal of Nano- and Electronic Physics, 8 (2), 02024–1–02024–7. doi: https://doi.org/10.21272/jnep.8(2).02024

Sobol’, O. V. (2007). Nanostructural ordering in W-Ti-B condensates. Physics of the Solid State, 49 (6), 1161–1167. doi: https://doi.org/10.1134/s1063783407060236

Song, T., Jiang, X., Shao, Z., Mo, D., Zhu, D., Zhu, M. et. al. (2017). Interfacial microstructure and mechanical properties of diffusion-bonded joints of titanium TC4 (Ti-6Al-4V) and Kovar (Fe-29Ni-17Co) alloys. Journal of Iron and Steel Research, International, 24 (10), 1023–1031. doi: https://doi.org/10.1016/s1006-706x(17)30149-8

Krause-Rehberg, R., Pogrebnyak, A. D., Borisyuk, V. N., Kaverin, M. V., Ponomarev, A. G., Bilokur, M. A. et. al. (2013). Analysis of local regions near interfaces in nanostructured multicomponent (Ti-Zr-Hf-V-Nb)N coatings produced by the cathodic-arc-vapor-deposition from an arc of an evaporating cathode. The Physics of Metals and Metallography, 114 (8), 672–680. doi: https://doi.org/10.1134/s0031918x13080061

Vacuum-plasma coatings based on the multielement nitrides / Azarenkov N. A., Sobol O. V., Beresnev V. M., Pogrebnyak A. D., Kolesnikov D. A. et. al. // Metallofizika i Noveishie Tekhnologii. 2013. Vol. 35, Issue 8. P. 1061–1084.

Pohrelyuk, I. M., Kindrachuk, M. V., Lavrys’, S. M. (2016). Wear Resistance of VT22 Titanium Alloy After Nitriding Combined with Heat Treatment. Materials Science, 52 (1), 56–61.doi: https://doi.org/10.1007/s11003-016-9926-0

Zubkov, A. I., Zubarev, E. N., Sobol’, O. V., Hlushchenko, M. A., Lutsenko, E. V. (2017). Structure of vacuum Cu–Ta condensates. Physics of Metals and Metallography, 118 (2), 158–163. doi: https://doi.org/10.1134/s0031918x17020156

Kausar, A. (2016). Adhesion, morphology, and heat resistance properties of polyurethane coated poly(methyl methacrylate)/fullerene-C60 composite films. Composite Interfaces, 24 (7), 649–662. doi: https://doi.org/10.1080/09276440.2017.1257251

Hou, C., Zhang, M., Halder, A., Chi, Q. (2017). Graphene directed architecture of fine engineered nanostructures with electrochemical applications. Electrochimica Acta, 242, 202–218. doi: https://doi.org/10.1016/j.electacta.2017.04.117

Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I., Seal, S. (2011). Graphene based materials: Past, present and future. Progress in Materials Science, 56 (8), 1178–1271. doi: https://doi.org/10.1016/j.pmatsci.2011.03.003

Tsen, A. W., Brown, L., Havener, R. W., Park, J. (2012). Polycrystallinity and Stacking in CVD Graphene. Accounts of Chemical Research, 46 (10), 2286–2296. doi: https://doi.org/10.1021/ar300190z

Chu, P. K., Li, L. (2006). Characterization of amorphous and nanocrystalline carbon films. Materials Chemistry and Physics, 96 (2-3), 253–277. doi: https://doi.org/10.1016/j.matchemphys.2005.07.048

Meyer, J. C., Geim, A. K., Katsnelson, M. I., Novoselov, K. S., Booth, T. J., Roth, S. (2007). The structure of suspended graphene sheets. Nature, 446 (7131), 60–63. doi: https://doi.org/10.1038/nature05545

Lee, C., Wei, X., Kysar, J. W., Hone, J. (2008). Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 321 (5887), 385–388. doi: https://doi.org/10.1126/science.1157996

Jia, C., Jiang, J., Gan, L., Guo, X. (2012). Direct Optical Characterization of Graphene Growth and Domains on Growth Substrates. Scientific Reports, 2 (1). doi: https://doi.org/10.1038/srep00707

Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T. et. al. (2008). Fine Structure Constant Defines Visual Transparency of Graphene. Science, 320 (5881), 1308–1308. doi: https://doi.org/10.1126/science.1156965

Loh, K. P., Bao, Q., Ang, P. K., Yang, J. (2010). The chemistry of graphene. Journal of Materials Chemistry, 20 (12), 2277. doi: https://doi.org/10.1039/b920539j

Mouras, S., Hamm, A., Djurado, D., Cousseins, J. C. (1987). Synthesis of first stage graphite intercalation compounds with fluorides. Revue de chimie minerale, 24 (5), 572–582.

Yu, Q., Lian, J., Siriponglert, S., Li, H., Chen, Y. P., Pei, S.-S. (2008). Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters, 93 (11), 113103. doi: https://doi.org/10.1063/1.2982585

Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V. et. al. (2009). Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Letters, 9 (1), 30–35. doi: https://doi.org/10.1021/nl801827v

Li, X., Cai, W., Colombo, L., Ruoff, R. S. (2009). Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano Letters, 9 (12), 4268–4272. doi: https://doi.org/10.1021/nl902515k

Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D. et. al. (2009). Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 324 (5932), 1312–1314. doi: https://doi.org/10.1126/science.1171245

Wood, J. D., Schmucker, S. W., Lyons, A. S., Pop, E., Lyding, J. W. (2011). Effects of Polycrystalline Cu Substrate on Graphene Growth by Chemical Vapor Deposition. Nano Letters, 11 (11), 4547–4554. doi: https://doi.org/10.1021/nl201566c

Geng, D., Wu, B., Guo, Y., Huang, L., Xue, Y., Chen, J. et. al. (2012). Uniform hexagonal graphene flakes and films grown on liquid copper surface. Proceedings of the National Academy of Sciences, 109 (21), 7992–7996. doi: https://doi.org/10.1073/pnas.1200339109

Regmi, M., Chisholm, M. F., Eres, G. (2012). The effect of growth parameters on the intrinsic properties of large-area single layer graphene grown by chemical vapor deposition on Cu. Carbon, 50 (1), 134–141. doi: https://doi.org/10.1016/j.carbon.2011.07.063

Kim, H., Mattevi, C., Calvo, M. R., Oberg, J. C., Artiglia, L., Agnoli, S. et. al. (2012). Activation Energy Paths for Graphene Nucleation and Growth on Cu. ACS Nano, 6 (4), 3614–3623. doi: https://doi.org/10.1021/nn3008965

Wang, H., Wang, G., Bao, P., Yang, S., Zhu, W., Xie, X., Zhang, W.-J. (2012). Controllable Synthesis of Submillimeter Single-Crystal Monolayer Graphene Domains on Copper Foils by Suppressing Nucleation. Journal of the American Chemical Society, 134 (8), 3627–3630. doi: https://doi.org/10.1021/ja2105976

Li, Z., Wu, P., Wang, C., Fan, X., Zhang, W., Zhai, X. et. al. (2011). Low-Temperature Growth of Graphene by Chemical Vapor Deposition Using Solid and Liquid Carbon Sources. ACS Nano, 5 (4), 3385–3390. doi: https://doi.org/10.1021/nn200854p

Kolypaev, I. M., Sobol’, O. V., Myrakhovskiy, O. V., Levitsky, V. S., Larinova, T. V., Koltsova, T. S., Sobol, V. O. (2016). Estimation the uniformity of a polygraphene coating on copper (GCC). 2016 International Conference on Nanomaterials: Application & Properties (NAP). doi: https://doi.org/10.1109/nap.2016.7757274

Chen, K., Dzhiblin, P., Irving, A. (2001). MATLAB v matematicheskih issledovaniyah. Moscow: Mir, 346.

Gonsales, R., Vuds, R., Eddins, S. (2006). Cifrovaya obrabotka izobrazheniy v srede MATLAB. Moscow: Tekhnosfera, 616.

Madaan, A., Bhatia, M., Hooda, M. (2018). Implementation of Image Compression and Cryptography on Fractal Images. Lecture Notes in Networks and Systems, 49–61. doi: https://doi.org/10.1007/978-981-10-8360-0_5

Kolupaev, I., Sobol, O., Murakhovski, A., Koltsova, T., Kozlova, M., Sobol, V. (2016). Use of computer processing by the method of multi-threshold cross sections for the analysis of optical images of fractal surface microstructure. Eastern-European Journal of Enterprise Technologies, 5 (4 (83)), 29–35. doi: https://doi.org/10.15587/1729-4061.2016.81255

Sobol’, O. V., Kolupaev, I. N., Murahovskiy, A. V., Levitskiy, V. S. et. al. (2016). Express Method of Analysis Morphological Parameters of Graphene Coatings on a Copper Substrate. Journal of Nano- and Electronic Physics, 8 (4 (1)), 04013-1–04013-5. doi: https://doi.org/10.21272/jnep.8(4(1)).04013


GOST Style Citations


Nanoscale Surface Engineering with Deformation-Resistant Core–Shell Nanostructures / Morton B. D., Wang H., Fleming R. A., Zou M. // Tribology Letters. 2011. Vol. 42, Issue 1. P. 51–58. doi: https://doi.org/10.1007/s11249-011-9747-0 

Nb–Al–N thin films: Structural transition from nanocrystalline solid solution nc-(Nb,Al)N into nanocomposite nc-(Nb, Al)N/a–AlN / Ivashchenko V. I., Dub S. N., Scrynskii P. L., Pogrebnjak A. D., Sobol’ O. V., Tolmacheva G. N. et. al. // Journal of Superhard Materials. 2016. Vol. 38, Issue 2. P. 103–113. doi: https://doi.org/10.3103/s1063457616020040 

Tribological characteristics of (TiZrHfVNbTa)N coatings applied using the vacuum arc deposition method / Grigoriev S. N., Sobol O. V., Beresnev V. M., Serdyuk I. V., Pogrebnyak A. D., Kolesnikov D. A., Nemchenko U. S. // Journal of Friction and Wear. 2014. Vol. 35, Issue 5. P. 359–364. doi: https://doi.org/10.3103/s1068366614050067 

Synthesis of Deformation-Induced Nanocomposites on Aluminium D16 Alloy Surface by Ultrasonic Impact Treatment / Vasyliev M. O., Mordyuk B. M., Sidorenko S. I., Voloshko S. M., Burmak A. P., Kindrachuk M. V. // METALLOFIZIKA I NOVEISHIE TEKHNOLOGII. 2016. Vol. 38, Issue 4. P. 545–563. doi: https://doi.org/10.15407/mfint.38.04.0545 

Sobol’ O. V. The influence of nonstoichiometry on elastic characteristics of metastable β-WC1–x phase in ion plasma condensates // Technical Physics Letters. 2016. Vol. 42, Issue 9. P. 909–911. doi: https://doi.org/10.1134/s1063785016090108 

Sobol’ O. V. Structural Engineering Vacuum-plasma Coatings Interstitial Phases // Journal of Nano- and Electronic Physics. 2016. Vol. 8, Issue 2. P. 02024-1–02024-7. doi: https://doi.org/10.21272/jnep.8(2).02024 

Sobol’ O. V. Nanostructural ordering in W-Ti-B condensates // Physics of the Solid State. 2007. Vol. 49, Issue 6. P. 1161–1167. doi: https://doi.org/10.1134/s1063783407060236 

Interfacial microstructure and mechanical properties of diffusion-bonded joints of titanium TC4 (Ti-6Al-4V) and Kovar (Fe-29Ni-17Co) alloys / Song T., Jiang X., Shao Z., Mo D., Zhu D., Zhu M. et. al. // Journal of Iron and Steel Research, International. 2017. Vol. 24, Issue 10. P. 1023–1031. doi: https://doi.org/10.1016/s1006-706x(17)30149-8 

Analysis of local regions near interfaces in nanostructured multicomponent (Ti-Zr-Hf-V-Nb)N coatings produced by the cathodic-arc-vapor-deposition from an arc of an evaporating cathode / Krause-Rehberg R., Pogrebnyak A. D., Borisyuk V. N., Kaverin M. V., Ponomarev A. G., Bilokur M. A. et. al. // The Physics of Metals and Metallography. 2013. Vol. 114, Issue 8. P. 672–680. doi: https://doi.org/10.1134/s0031918x13080061 

Vacuum-plasma coatings based on the multielement nitrides / Azarenkov N. A., Sobol O. V., Beresnev V. M., Pogrebnyak A. D., Kolesnikov D. A. et. al. // Metallofizika i Noveishie Tekhnologii. 2013. Vol. 35, Issue 8. P. 1061–1084.

Wear Resistance of VT22 Titanium Alloy After Nitriding Combined with Heat Treatment / Pohrelyuk I. M., Kindrachuk M. V., Lavrys’ S. M. // Materials Science. 2016. Vol. 52, Issue 1. P. 56–61. doi: https://doi.org/10.1007/s11003-016-9926-0 

Structure of vacuum Cu–Ta condensates / Zubkov A. I., Zubarev E. N., Sobol’ O. V., Hlushchenko M. A., Lutsenko E. V. // Physics of Metals and Metallography. 2017. Vol. 118, Issue 2. P. 158–163. doi: https://doi.org/10.1134/s0031918x17020156 

Kausar A. Adhesion, morphology, and heat resistance properties of polyurethane coated poly(methyl methacrylate)/fullerene-C60 composite films // Composite Interfaces. 2016. Vol. 24, Issue 7. P. 649–662. doi: https://doi.org/10.1080/09276440.2017.1257251 

Graphene directed architecture of fine engineered nanostructures with electrochemical applications / Hou C., Zhang M., Halder A., Chi Q. // Electrochimica Acta. 2017. Vol. 242. P. 202–218. doi: https://doi.org/10.1016/j.electacta.2017.04.117 

Graphene based materials: Past, present and future / Singh V., Joung D., Zhai L., Das S., Khondaker S. I., Seal S. // Progress in Materials Science. 2011. Vol. 56, Issue 8. P. 1178–1271. doi: https://doi.org/10.1016/j.pmatsci.2011.03.003 

Polycrystallinity and Stacking in CVD Graphene / Tsen A. W., Brown L., Havener R. W., Park J. // Accounts of Chemical Research. 2012. Vol. 46, Issue 10. P. 2286–2296. doi: https://doi.org/10.1021/ar300190z 

Chu P. K., Li L. Characterization of amorphous and nanocrystalline carbon films // Materials Chemistry and Physics. 2006. Vol. 96, Issue 2-3. P. 253–277. doi: https://doi.org/10.1016/j.matchemphys.2005.07.048 

The structure of suspended graphene sheets / Meyer J. C., Geim A. K., Katsnelson M. I., Novoselov K. S., Booth T. J., Roth S. // Nature. 2007. Vol. 446, Issue 7131. P. 60–63. doi: https://doi.org/10.1038/nature05545 

Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene / Lee C., Wei X., Kysar J. W., Hone J. // Science. 2008. Vol. 321, Issue 5887. P. 358–388. doi: https://doi.org/10.1126/science.1157996 

Jia C., Jiang J., Gan L., Guo X. Direct Optical Characterization of Graphene Growth and Domains on Growth Substrates // Scientific Reports. 2012. Vol. 2, Issue 1. doi: https://doi.org/10.1038/srep00707 

Fine Structure Constant Defines Visual Transparency of Graphene / Nair R. R., Blake P., Grigorenko A. N., Novoselov K. S., Booth T. J., Stauber T. et. al. // Science. 2008. Vol. 320, Issue 5881. P. 1308–1308. doi: https://doi.org/10.1126/science.1156965 

The chemistry of graphene / Loh K. P., Bao Q., Ang P. K., Yang J. // Journal of Materials Chemistry. 2010. Vol. 20, Issue 12. P. 2277. doi: https://doi.org/10.1039/b920539j 

Synthesis of first stage graphite intercalation compounds with fluorides / Mouras S., Hamm A., Djurado D., Cousseins J. C. // Revue de chimie minerale. 1987. Vol. 24, Issue 5. P. 572–582.

Graphene segregated on Ni surfaces and transferred to insulators / Yu Q., Lian J., Siriponglert S., Li H., Chen Y. P., Pei S.-S. // Applied Physics Letters. 2008. Vol. 93, Issue 11. P. 113103. doi: https://doi.org/10.1063/1.2982585 

Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition / Reina A., Jia X., Ho J., Nezich D., Son H., Bulovic V. et. al. // Nano Letters. 2009. Vol. 9, Issue 1. P. 30–35. doi: https://doi.org/10.1021/nl801827v 

Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling / Li X., Cai W., Colombo L., Ruoff R. S. // Nano Letters. 2009. Vol. 9, Issue 12. P. 4268–4272. doi: https://doi.org/10.1021/nl902515k 

Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils / Li X., Cai W., An J., Kim S., Nah J., Yang D. et. al. // Science. 2009. Vol. 324, Issue 5932. P. 1312–1314. doi: https://doi.org/10.1126/science.1171245 

Effects of Polycrystalline Cu Substrate on Graphene Growth by Chemical Vapor Deposition / Wood J. D., Schmucker S. W., Lyons A. S., Pop E., Lyding J. W. // Nano Letters. 2011. Vol. 11, Issue 11. P. 4547–4554. doi: https://doi.org/10.1021/nl201566c 

Uniform hexagonal graphene flakes and films grown on liquid copper surface / Geng D., Wu B., Guo Y., Huang L., Xue Y., Chen J. et. al. // Proceedings of the National Academy of Sciences. 2012. Vol. 109, Issue 21. P. 7992–7996. doi: https://doi.org/10.1073/pnas.1200339109 

Regmi M., Chisholm M. F., Eres G. The effect of growth parameters on the intrinsic properties of large-area single layer graphene grown by chemical vapor deposition on Cu // Carbon. 2012. Vol. 50, Issue 1. P. 134–141. doi: https://doi.org/10.1016/j.carbon.2011.07.063 

Activation Energy Paths for Graphene Nucleation and Growth on Cu / Kim H., Mattevi C., Calvo M. R., Oberg J. C., Artiglia L., Agnoli S. et. al. // ACS Nano. 2012. Vol. 6, Issue 4. P. 3614–3623. doi: https://doi.org/10.1021/nn3008965 

Controllable Synthesis of Submillimeter Single-Crystal Monolayer Graphene Domains on Copper Foils by Suppressing Nucleation / Wang H., Wang G., Bao P., Yang S., Zhu W., Xie X., Zhang W.-J. // Journal of the American Chemical Society. 2012. Vol. 134, Issue 8. P. 3627–3630. doi: https://doi.org/10.1021/ja2105976 

Low-Temperature Growth of Graphene by Chemical Vapor Deposition Using Solid and Liquid Carbon Sources / Li Z., Wu P., Wang C., Fan X., Zhang W., Zhai X. et. al. // ACS Nano. 2011. Vol. 5, Issue 4. P. 3385–3390. doi: https://doi.org/10.1021/nn200854p 

Estimation the uniformity of a polygraphene coating on copper (GCC) / Kolypaev I. M., Sobol’ O. V., Myrakhovskiy O. V., Levitsky V. S., Larinova T. V., Koltsova T. S., Sobol V. O. // 2016 International Conference on Nanomaterials: Application & Properties (NAP). 2016. doi: https://doi.org/10.1109/nap.2016.7757274 

Chen K., Dzhiblin P., Irving A. MATLAB v matematicheskih issledovaniyah. Moscow: Mir, 2001. 346 p.

Gonsales R., Vuds R., Eddins S. Cifrovaya obrabotka izobrazheniy v srede MATLAB. Moscow: Tekhnosfera, 2006. 616 p.

Madaan A., Bhatia M., Hooda M. Implementation of Image Compression and Cryptography on Fractal Images // Lecture Notes in Networks and Systems. 2018. P. 49–61. doi: https://doi.org/10.1007/978-981-10-8360-0_5 

Use of computer processing by the method of multi-threshold cross sections for the analysis of optical images of fractal surface microstructure / Kolupaev I., Sobol O., Murakhovski A., Koltsova T., Kozlova M., Sobol V. // Eastern-European Journal of Enterprise Technologies. 2016. Vol. 5, Issue 4 (83). P. 29–35. doi: https://doi.org/10.15587/1729-4061.2016.81255 

Express Method of Analysis Morphological Parameters of Graphene Coatings on a Copper Substrate / Sobol’ O. V., Kolupaev I. N., Murahovskiy A. V., Levitskiy V. S., Koltsova T. S. // Journal of Nano- and Electronic Physics. 2016. Vol. 8, Issue 4 (1). P. 04013-1–04013-5. doi: https://doi.org/10.21272/jnep.8(4(1)).04013 







Copyright (c) 2018 Yu Dai, Igor Kolupaev, Oleg Sоbоl

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061