Purification of wastewater from the ions of copper, zinc, and lead using an electrolysis method

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.148896

Keywords:

waste water, heavy metals, water purification, water hardness, output for current, anion­exchanging membrane, electrolyzer, electroextraction

Abstract

Heavy metals penetrate water reservoirs as a result of natural and anthropogenic processes, thereby accumulating in soil, bottom sediment, sludge, and can further migrate into groundwater and surface water. The main sources of heavy metals penetration into natural waters are the insufficiently treated waste waters from many branches of industry. That renders relevance to the problem of removing heavy metals from wastewater in order to prevent excessive pollution of water reservoirs. Among existing methods of water purification from heavy metals’ ions at significant volumes of industrial wastewater, the electrochemical methods are rather promising. The advantage of this method is a possibility to recycle the used regeneration solutions with obtaining metals that are suitable for reuse.

This paper reports results of research into the processes of electrochemical removal of heavy metals’ cations from diluted aqueous solutions in one­and two­chamber electrolyzers. When conducting the study in a two­chamber electrolyzer, the anode and cathode regions were separated by the anion­exchanging membrane MA­40. A dependence of the influence of hardness, solutions’ pH, anodic current density, and the duration of electrolysis on efficiency of the removal of heavy metals’ ions was investigated. It is shown that the ions of zinc, copper and lead are effectively removed from aqueous solutions using the electrolysis at a starting concentration of 10 mg/dm3. It was established that at the low concentrations of ions, the output for current, when reducing metals, reached (4–20)·10­4 % and changed little with concentration. It was determined that the efficiency of water purification from heavy metals’ ions using electrolysis increases with an increase in pH of the medium and with a decrease in the hardness of water. In the two­chamber electrolyzers, these factors exert almost no effect on purification efficiency. The paper shows the prospect of using electrolysis for the selective removal of heavy metals from tap, softened and natural water. A given purification method makes it possible to not only post­clean wastewater to the maximally permissible concentrations, but also enables the purification of water from natural water bodies to the quality of drinking water

Author Biographies

Nikolai Gomelya, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor

Department of Ecology and Technology of Plant Polymers

Yevheniia Melnychenko, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

Рostgraduate student

Department of Ecology and Technology of Plant Polymers

Iaroslav Radovenchyk, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of Ecology and technology of Plant Polymers

References

  1. Dubinina, A. A., Ovchynnikova, I. F., Petriv, V. O. (2012). Vyznachennia vmistu vazhkykh metaliv u vynohradnomu vyni "Kahor" vitchyznianoho vyrobnytstva. Prohresyvni tekhnika ta tekhnolohiyi kharchovykh vyrobnytstv restorannoho hospodarstva i torhivli, 1, 224–229.
  2. Ramazanov, A. Sh., Esmail, G. Q., Sveshnikova, D. A. (2015). Kinetics and thermodynamics of sorption of heavy metal ions on the clay containing montmorillonite. Sorbcionnye i hromatograficheskie processy, 15 (5), 672–682.
  3. Homelia, M. D., Malin, V. P., Halimova, V. M. (2016). Kontsentruvannia ioniv midi ta vyznachennia efektyvnosti yii desorbtsiyi z kationitiv v dynamichnykh umovakh. Problemy vodopostachannia, vodovidvedennia ta hidravliky, 27, 78–84.
  4. Paulino, A. T., Minasse, F. A. S., Guilherme, M. R., Reis, A. V., Muniz, E. C., Nozaki, J. (2006). Novel adsorbent based on silkworm chrysalides for removal of heavy metals from wastewaters. Journal of Colloid and Interface Science, 301 (2), 479–487. doi: https://doi.org/10.1016/j.jcis.2006.05.032
  5. Al-Shannag, M., Al-Qodah, Z., Bani-Melhem, K., Qtaishat, M. R., Alkasrawi, M. (2015). Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study and process performance. Chemical Engineering Journal, 260, 749–756. doi: https://doi.org/10.1016/j.cej.2014.09.035
  6. Arbabi, M., Hemati, S., Amir, M. (2015). Removal of lead ions from industrial wastewater: A review of removal methods. International Journal of Epidemiologic Research, 2 (2), 105–109.
  7. Serpokrylov, N. S., Vil'son, E. V., Getmancev, S. V., Marochkin, A. A. (2009). Ekologiya ochistki stochnyh vod fiziko-himicheskimi metodami. Moscow, 264.
  8. Lukasheva, G. N., Butkevich, D. M. (2008). Analiz sravnitel'nyh ispytaniy koagulyantov pri ochistke vody. Tekhnologiya nefti i gaza, 4, 16–20.
  9. Gomelya, N. D., Krasil'nikova, T. N. (2007). Ocenka effektivnosti alyuminievyh koagulyantov pri ochistke stochnyh vod. Ekotekhnologii i resursosberezhenie, 1, 53–56.
  10. Gomelia, N., Trokhymenko, G., Hlushko, O., Shabliy, T. (2018). Electroextraction of heavy metals from wastewater for the protection of natural water bodies from pollution. Eastern-European Journal of Enterprise Technologies, 1 (10 (91)), 55–61. doi: https://doi.org/10.15587/1729-4061.2018.123929
  11. Buharova, E. A., Tatarinceva, E. A., Ol'shanskaya, L. N., Shayhiev, I. G. (2014). Izvlechenie kationov Pb i Cu iz rastvorov s pomoshch'yu kompozicionnogo sorbenta na osnove PETF. Vestnik Kazanskogo tekhnologicheskogo universiteta, 17 (3), 34–37.
  12. Rajic, N., Stojakovic, D., Jovanovic, M., Logar, N. Z., Mazaj, M., Kaucic, V. (2010). Removal of nickel(II) ions from aqueous solutions using the natural clinoptilolite and preparation of nano-NiO on the exhausted clinoptilolite. Applied Surface Science, 257 (5), 1524–1532. doi: https://doi.org/10.1016/j.apsusc.2010.08.090
  13. Rodrigues, D., Rocha-Santos, T. A. P., Freitas, A. C., Gomes, A. M. P., Duarte, A. C. (2013). Strategies based on silica monoliths for removing pollutants from wastewater effluents: A review. Science of The Total Environment, 461-462, 126–138. doi: https://doi.org/10.1016/j.scitotenv.2013.04.091
  14. Filatova, E. G. (2015). Wastewater treatment from heavy metal ions, based on the physico-chemical processes. Izvestiya vuzov. Prikladnaya himiya i biotekhnologiya, 2 (13), 97–109.
  15. Fedorova, E. K., Bil'chenko, N. G. (2014). Ochistka stochnyh vod gal'vanicheskih proizvodstv. Vestnik magistratury, 12-1 (39), 66–68.
  16. Gomelya, N. D., Glushko, E. V., Gomelya, N. D., Trohimenko, A. G. (2017). Elektroliticheskoe izvlechenie ionov tyazhelyh metallov iz solyanokislyh rastvorov. Energotekhnologii i resursosberezhenie, 1, 60–67.
  17. Anisimova, O. S., Sergeev, V. A., Mamyachenkov, S. V., Karelov, S. V., Sergeeva, Yu. F. (2013). Elektroekstrakciya svinca iz svincovo-trilonatnogo rastvora. Izvestiya vuzov. Cvetnaya metallurgiya, 1, 17–21.
  18. Al Aji, B., Yavuz, Y., Koparal, A. S. (2012). Electrocoagulation of heavy metals containing model wastewater using monopolar iron electrodes. Separation and Purification Technology, 86, 248–254. doi: https://doi.org/10.1016/j.seppur.2011.11.011
  19. Hanay, Ö., Hasar, H. (2011). Effect of anions on removing Cu2+, Mn2+ and Zn2+ in electrocoagulation process using aluminum electrodes. Journal of Hazardous Materials, 189 (1-2), 572–576. doi: https://doi.org/10.1016/j.jhazmat.2011.02.073
  20. Adhoum, N., Monser, L., Bellakhal, N., Belgaied, J. (2004). Treatment of electroplating wastewater containing Cu2+, Zn2+ and Cr(VI) by electrocoagulation. Journal of Hazardous Materials, 112 (3), 207–213. doi: https://doi.org/10.1016/j.jhazmat.2004.04.018
  21. Shabliy, T. O., Homelia, M. D., Panov, Ye. M. (2010). Elektrokhimichna pererobka vidpratsovanykh rozchyniv, shcho utvoriuiutsia pry reheneratsiyi kationitiv. Ekologiya i promyshlennost', 2, 33–38.
  22. Surovtsev, I. V., Galimova, V. M., Mank, V. V., Kopilevich, V. A. (2009). Determination of heavy metals in water ecosystem on the basis of method inversion chronopotenciometric. Himiya i tekhnologiya vody, 31 (6), 677–687.
  23. Malin, V. P., Galimova, V. M., Gomelya, N. D. (2016). Evaluating the effectiveness of KU-2-8 at extraction copper ions from water in the precense of hardness ions. Voda i vodoochysni tekhnolohiyi. Naukovo-tekhnichni visti, 2, 10–18.

Downloads

Published

2018-12-05

How to Cite

Gomelya, N., Melnychenko, Y., & Radovenchyk, I. (2018). Purification of wastewater from the ions of copper, zinc, and lead using an electrolysis method. Eastern-European Journal of Enterprise Technologies, 6(10 (96), 42–48. https://doi.org/10.15587/1729-4061.2018.148896