DOI: https://doi.org/10.15587/1729-4061.2018.151937

Optimizing performance of lithium­ion battery by nano­silicon addition mixed in LI4TI5O12 anode made using mechanochemical­hydrothermal method

Bambang Priyono, Anne Zulfia Syahrial, Achmad Subhan, Faizah Faizah, Agnes Gusvianty

Abstract


Lithium Titanate (Li4Ti5O12 or LTO) is one of the best candidates to replace graphite as anode material in the lithium-ion battery (LIB), due to unwanted solid electrolyte interphase (SEI) layer formation that consumes Li+ ion and reduces LIB performance and may cause thermal run-away. The ability of LTO to avoid SEI formation and undergo zero-strain during intercalation makes LTO has excellent safety during application. However, the spinel lithium titanate has the low theoretical capacity and poor electronic conductivity. This less conductivity brings limitation to its application. The sol-gel method and combining the LTO with Si that possesses a high theoretical capacity are the key factor to overcome the LTO disadvantages. To attain its high power, safety factor and low-cost fabrication properties, hydrothermal-mechanochemical treatment were used in sol-gel synthesis method in order to outgrowth (Li4Ti5O12)nanostructure. Then, the 5 %, 10 %, and 15 % weight ratio percentage of silicon nano-particle were added into electrode composite in order to enhance the capacity of lithium titanate anode. All samples were characterized using XRD, SEM and TEM. The active anode material LTO/Si nano was coated and prepared into coin cell battery. The assembled coin half-cell used lithium metal foil as the counter electrode. The battery performance was tested using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and charge-discharge (CD).

The XRD results showed that the obtained compounds of lithium titanate (Li4Ti5O12) crystalline spinel and the impurities of TiO2 rutile. The SEM micrograph results showed almost uniform morphological structures as agglomerates in most of the samples. While, the TEM image of Si nano had a crystalline phase with the particle size less than 100 mm. However, the presence of unwanted SiOx layer was not clearly observed. Addition of Si-nanoparticle could increase the specific capacity to above the LTO theoretical capacity, however, the formation of SiOx insulating layer is predicted to be the main hindrance that reduces the effectiveness of addition of Si nanoparticle to the present LTO compound. The hydrothermal treatment of the sample could enhance the performance of nano-composite LTO/Si anode. Based on CD results, the obtained LTO/Si compound possesses the discharge capability up to 12 C.

The CV and CD results showed the optimum percentage of 10 % wt. Si and best capacity of the sample was obtained at 229.72 mAh/g


Keywords


Li4Ti5O12 /LTO anode; silicon; half-cell battery; battery capacity; sol-gel; nanoparticle; TiO2

Full Text:

PDF

References


Goriparti, S., Miele, E., De Angelis, F., Di Fabrizio, E., Proietti Zaccaria, R., Capiglia, C. (2014). Review on recent progress of nanostructured anode materials for Li-ion batteries. Journal of Power Sources, 257, 421–443. doi: https://doi.org/10.1016/j.jpowsour.2013.11.103

Wang, D., Wu, X., Zhang, Y., Wang, J., Yan, P., Zhang, C., He, D. (2014). The influence of the TiO2 particle size on the properties of Li4Ti5O12 anode material for lithium-ion battery. Ceramics International, 40 (2), 3799–3804. doi: https://doi.org/10.1016/j.ceramint.2013.09.038

Li, H., Shen, L., Zhang, X., Wang, J., Nie, P., Che, Q., Ding, B. (2013). Nitrogen-doped carbon coated Li4Ti5O12 nanocomposite: Superior anode materials for rechargeable lithium ion batteries. Journal of Power Sources, 221, 122–127. doi: https://doi.org/10.1016/j.jpowsour.2012.08.032

Chen, C., Agrawal, R., Wang, C. (2015). High Performance Li4Ti5O12/Si Composite Anodes for Li-Ion Batteries. Nanomaterials, 5 (3), 1469–1480. doi: https://doi.org/10.3390/nano5031469

Usui, H., Wasada, K., Shimizu, M., Sakaguchi, H. (2013). TiO2/Si composites synthesized by sol–gel method and their improved electrode performance as Li-ion battery anodes. Electrochimica Acta, 111, 575–580. doi: https://doi.org/10.1016/j.electacta.2013.08.015

Zhang, Y., Zhang, C., Lin, Y., Xiong, D.-B., Wang, D., Wu, X., He, D. (2014). Influence of Sc3+ doping in B-site on electrochemical performance of Li4Ti5O12 anode materials for lithium-ion battery. Journal of Power Sources, 250, 50–57. doi: https://doi.org/10.1016/j.jpowsour.2013.10.137

Wang, J., Zhao, H., Wen, Y., Xie, J., Xia, Q., Zhang, T. et. al. (2013). High performance Li4Ti5O12 material as anode for lithium-ion batteries. Electrochimica Acta, 113, 679–685. doi: https://doi.org/10.1016/j.electacta.2013.09.086

Mosa, J., Vélez, J. F., Lorite, I., Arconada, N., Aparicio, M. (2012). Film-shaped sol–gel Li4Ti5O12 electrode for lithium-ion microbatteries. Journal of Power Sources, 205, 491–494. doi: https://doi.org/10.1016/j.jpowsour.2012.01.090

Ozanam, F., Rosso, M. (2016). Silicon as anode material for Li-ion batteries. Materials Science and Engineering: B, 213, 2–11. doi: https://doi.org/10.1016/j.mseb.2016.04.016

Zhou, Y., Jiang, X., Chen, L., Yue, J., Xu, H., Yang, J., Qian, Y. (2014). Novel mesoporous silicon nanorod as an anode material for lithium ion batteries. Electrochimica Acta, 127, 252–258. doi: https://doi.org/10.1016/j.electacta.2014.01.158

Liang, B., Liu, Y., Xu, Y. (2014). Silicon-based materials as high capacity anodes for next generation lithium ion batteries. Journal of Power Sources, 267, 469–490. doi: https://doi.org/10.1016/j.jpowsour.2014.05.096

Sun, X., Hegde, M., Zhang, Y., He, M., Gu, L., Wang, Y., Shu, J. (2014). Structure and Electrochemical Properties of Spinel Li 4 Ti 5 O 12 Nanocomposites as Anode for Lithium-Ion Battery. International Journal of Electrochemical Science, 9, 1583–1596.

Priyono, B., Murti, P. B., Syahrial, A. Z., Subhan, A. (2017). Optimizing the performance of Li4Ti5O12 anode synthesized from TiO2 xerogel and LiOH with hydrothermal-ball mill method by using acetylene black. AIP Conference Proceedings. doi: https://doi.org/10.1063/1.4979221

Li, B., Ning, F., He, Y., Du, H., Yang, Q. H., Ma, J. et. al. (2011). Synthesis and Characterization of Long Life Li4Ti5O12/C Composite Using Amorphous TiO2 Nanoparticles. International Journal of Electrochemical Science, 6, 3210–3223.

Syahrial, A. Z., Sari, N. T. A., Priyono, B., Subhan, A. (2017). Effect of nano silicon content in half-cell Li-ion batteries performance with Li4Ti5O12 xerogel TiO2 solid-state anode materials. AIP Conference Proceedings. doi: https://doi.org/10.1063/1.4979220

Nitta, N., Wu, F., Lee, J. T., Yushin, G. (2015). Li-ion battery materials: present and future. Materials Today, 18 (5), 252–264. doi: https://doi.org/10.1016/j.mattod.2014.10.040

Wang, J. (2006). Analytical Electrochemistry. John Wiley & Sons, Inc. doi: https://doi.org/10.1002/0471790303


GOST Style Citations


Review on recent progress of nanostructured anode materials for Li-ion batteries / Goriparti S., Miele E., De Angelis F., Di Fabrizio E., Proietti Zaccaria R., Capiglia C. // Journal of Power Sources. 2014. Vol. 257. P. 421–443. doi: https://doi.org/10.1016/j.jpowsour.2013.11.103 

The influence of the TiO2 particle size on the properties of Li4Ti5O12 anode material for lithium-ion battery / Wang D., Wu X., Zhang Y., Wang J., Yan P., Zhang C., He D. // Ceramics International. 2014. Vol. 40, Issue 2. P. 3799–3804. doi: https://doi.org/10.1016/j.ceramint.2013.09.038 

Nitrogen-doped carbon coated Li4Ti5O12 nanocomposite: Superior anode materials for rechargeable lithium ion batteries / Li H., Shen L., Zhang X., Wang J., Nie P., Che Q., Ding B. // Journal of Power Sources. 2013. Vol. 221. P. 122–127. doi: https://doi.org/10.1016/j.jpowsour.2012.08.032 

Chen C., Agrawal R., Wang C. High Performance Li4Ti5O12/Si Composite Anodes for Li-Ion Batteries // Nanomaterials. 2015. Vol. 5, Issue 3. P. 1469–1480. doi: https://doi.org/10.3390/nano5031469 

TiO2/Si composites synthesized by sol–gel method and their improved electrode performance as Li-ion battery anodes / Usui H., Wasada K., Shimizu M., Sakaguchi H. // Electrochimica Acta. 2013. Vol. 111. P. 575–580. doi: https://doi.org/10.1016/j.electacta.2013.08.015 

Influence of Sc3+ doping in B-site on electrochemical performance of Li4Ti5O12 anode materials for lithium-ion battery / Zhang Y., Zhang C., Lin Y., Xiong D.-B., Wang D., Wu X., He D. // Journal of Power Sources. 2014. Vol. 250. P. 50–57. doi: https://doi.org/10.1016/j.jpowsour.2013.10.137 

High performance Li4Ti5O12 material as anode for lithium-ion batteries / Wang J., Zhao H., Wen Y., Xie J., Xia Q., Zhang T. et. al. // Electrochimica Acta. 2013. Vol. 113. P. 679–685. doi: https://doi.org/10.1016/j.electacta.2013.09.086 

Film-shaped sol–gel Li4Ti5O12 electrode for lithium-ion microbatteries / Mosa J., Vélez J. F., Lorite I., Arconada N., Aparicio M. // Journal of Power Sources. 2012. Vol. 205. P. 491–494. doi: https://doi.org/10.1016/j.jpowsour.2012.01.090 

Ozanam F., Rosso M. Silicon as anode material for Li-ion batteries // Materials Science and Engineering: B. 2016. Vol. 213. P. 2–11. doi: https://doi.org/10.1016/j.mseb.2016.04.016 

Novel mesoporous silicon nanorod as an anode material for lithium ion batteries / Zhou Y., Jiang X., Chen L., Yue J., Xu H., Yang J., Qian Y. // Electrochimica Acta. 2014. Vol. 127. P. 252–258. doi: https://doi.org/10.1016/j.electacta.2014.01.158 

Liang B., Liu Y., Xu Y. Silicon-based materials as high capacity anodes for next generation lithium ion batteries // Journal of Power Sources. 2014. Vol. 267. P. 469–490. doi: https://doi.org/10.1016/j.jpowsour.2014.05.096 

Structure and Electrochemical Properties of Spinel Li 4 Ti 5 O 12 Nanocomposites as Anode for Lithium-Ion Battery / Sun X., Hegde M., Zhang Y., He M., Gu L., Wang Y., Shu J. // International Journal of Electrochemical Science. 2014. Vol. 9. P. 1583–1596.

Optimizing the performance of Li4Ti5O12 anode synthesized from TiO2 xerogel and LiOH with hydrothermal-ball mill method by using acetylene black / Priyono B., Murti P. B., Syahrial A. Z., Subhan A. // AIP Conference Proceedings. 2017. doi: https://doi.org/10.1063/1.4979221 

Synthesis and Characterization of Long Life Li4Ti5O12/C Composite Using Amorphous TiO2 Nanoparticles / Li B., Ning F., He Y., Du H., Yang Q. H., Ma J. et. al. // International Journal of Electrochemical Science. 2011. Vol. 6. P. 3210–3223.

Effect of nano silicon content in half-cell Li-ion batteries performance with Li4Ti5O12 xerogel TiO2 solid-state anode materials / Syahrial A. Z., Sari N. T. A., Priyono B., Subhan A. // AIP Conference Proceedings. 2017. doi: https://doi.org/10.1063/1.4979220 

Li-ion battery materials: present and future / Nitta N., Wu F., Lee J. T., Yushin G. // Materials Today. 2015. Vol. 18, Issue 5. P. 252–264. doi: https://doi.org/10.1016/j.mattod.2014.10.040 

Wang J. Analytical Electrochemistry. John Wiley & Sons, Inc., 2006. doi: https://doi.org/10.1002/0471790303 







Copyright (c) 2018 Bambang Priyono, Anne Zulfia Syahrial, Achmad Subhan, Faizah Faizah, Agnes Gusvianty

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061