Development of cooling systems on the basis of absorption water-ammonia refrigerating machines of low refrigeration capacity

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.164301

Keywords:

absorption water-ammonia refrigeration machine, refrigerating capacity, solar collectors, night radiation cooling

Abstract

An analysis of the cycles of an absorption water-ammonia refrigerating machine (AWARM) is carried out in a wide range of operating parameters (temperature of the heating medium: 45...145 °C, outdoor temperature: 10...43 °C, temperature of the cooling object: minus 25...5 °C). It is shown that under the considered operating conditions, the AWARM positive effect on the energy efficiency of the AWARM is low outdoor air temperatures and high temperatures of the heating heat source.

A promising cooling system based on low refrigerating capacity AWARM is developed using solar thermal energy and the technology of using natural seasonal and daily temperature potential of atmospheric air, including using night radiation cooling (NRC).

The key elements of the cooling system are: storage tank; cooling system based on AWARM with combined sources of heat load; heat removal system in the mode of convection and radiation at night.

It is shown that AWARM in combination with a cold storage tank allows to provide a wide range of refrigeration processing by selecting a working substance with a phase transition (melting-solidification). Working substances with a temperature level are recommended: minus 25 °C (for products of animal origin); 0 °С (primary refrigerated processing of milk); 5 °С (for fruits and vegetables).

It is advisable to ensure the guaranteed heat removal from the cold storage tank of the cooling system in the passive «thermal diode» mode with the help of two-phase thermosyphons.

When working with solar collectors with water, as a coolant for the AWARM generator, the AWARM scheme with a booster compressor in front of the condenser is proposed.

It is shown that the greatest effect of the NRC technology in heat removal systems can be achieved in the high-mountainous regions of the planet with minimal atmospheric humidity, for example, in Kazakhstan

Author Biographies

Alexandr Titlov, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

Doctor of Technical Sciences, Professor, Head of Department

Department of Heat-and-Power Engineering and Oil-and-Gas Transportation and Storing

Eugeniy Osadchuk, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

Senior Lecturer

Department of Mathematics

Alexandr Tsoy, Almaty Technological University Tole bi str., 100, Almaty, Republic of Kazakhstan, 050012

PhD, Associate Professor

Department of Mechanization and Automation of Production Processes

Assel Alimkeshova, Almaty Technological University Tole bi str., 100, Almaty, Republic of Kazakhstan, 050012

Postgraduate student

Department of Mechanization and Automation of Production Processes

Rita Jamasheva, Almaty Technological University Tole bi str., 100, Almaty, Republic of Kazakhstan, 050012

Postgraduate student

Department of Mechanization and Automation of Production Processes

References

  1. Pro prodovolchu bezpeku Ukrainy: Zakon Ukrainy No. 8370-1 za stanom na 28.04.2011 r. (2011). Verkhovna Rada Ukrainy. Kyiv: Parlam. Vyd-vo.
  2. DSTU 3023-95 (HOST 30204-95, ISO 5155-83, ISO 7371-85, ISO 8187-91). Prylady kholodylni pobutovi. Ekspluatatsiyni kharakterystyky ta metody vyprobuvan (1996). Kyiv, 22.
  3. Perel'shteyn, B. H. (2008). Novye energeticheskie sistemy. Kazan': Izd-vo Kazan. gos. tekhn. un-ta, 244.
  4. Tataurov, O. (2009). Holod – Solnce. Dlya izobretateley i inzhenerov holodil'naya tekhnika na al'ternativnyh istochnikah energii – bogateyshee pole dlya tvorchestva. Holodil'niy biznes, 7, 18–20.
  5. Ishchenko, I. M. (2009). Rozrobka metodyky rozrakhunku transportnykh absorbtsiynykh kholodylnykh pryboriv dlia bezperervnoho kholodylnoho lantsiuha. Naukovi pratsi Odeskoi natsionalnoi akademii kharchovykh tekhnolohiy, 1 (35), 174–178.
  6. Titlov, A. S., Gozhelov, D. P., Shlapak, G. V., Redunov, G. M. (2015). Analysis of prospects for use on vessels pumpless absorption-type refrigerating units. Refrigeration Engineering and Technology, 51 (3), 62–65. doi: https://doi.org/10.15673/0453-8307.3/2015.42638
  7. Dincer, I., Ratlamwala, T. A. H. (2016). Developments in Absorption Refrigeration Systems. Integrated Absorption Refrigeration Systems, 241–257. doi: https://doi.org/10.1007/978-3-319-33658-9_8
  8. Yildiz, A. (2016). Thermoeconomic analysis of diffusion absorption refrigeration systems. Applied Thermal Engineering, 99, 23–31. doi: https://doi.org/10.1016/j.applthermaleng.2016.01.041
  9. Doroshenko, A. V., Glauberman, M. A. (2012). Al'ternativnaya energetika. Solnechnye sistemy teplohladosnabzheniya. Odessa: Odessk. nac. un-t im. I. I. Mechnikova, 447.
  10. Korba, E. N., Hmel'nyuk, M. G. (2008). Prirodnye hladagenty i ih smesi kak novye «starye» rabochie tela holodil'nyh mashin. Refrigeration Engineering and Technology, 4, 16–20.
  11. Kholodkov, A., Osadchuk, E., Titlov, A., Boshkova, I., Zhihareva, N. (2018). Improving the energy efficiency of solar systems for obtaining water from atmospheric air. Eastern-European Journal of Enterprise Technologies, 3 (8 (93)), 41–51. doi: https://doi.org/10.15587/1729-4061.2018.133643
  12. Selivanov, A. P. (2013). Absorbcionnye holodil'nye apparaty sezonnogo tipa. Sovremennoe sostoyanie i tendencii razvitiya. Zbirnyk naukovykh prats Natsionalnoho universytetu korablebuduvannia, 5-6, 82–88. Available at: http://nbuv.gov.ua/UJRN/znpnuk_2013_5-6_17
  13. Titlova, O. A., Titlov, A. S. (2011). Analiz vliyaniya teplovoy moshchnosti, podvodimoy v generatore absorbcionnogo holodil'nogo agregata, na rezhimy raboty i energeticheskuyu effektivnost' absorbcionnogo holodil'nogo pribora. Naukovi pratsi Odeskoi natsionalnoi akademiyi kharchovykh tekhnolohiy, 1 (39), 148–154.
  14. Ishchenko, I. N. (2010). Modelirovanie ciklov nasosnyh i beznasosnyh absorbcionnyh holodil'nyh agregatov. Naukovi pratsi Odeskoi natsionalnoi akademiyi kharchovykh tekhnolohiy, 2 (38), 393–405.
  15. Srinivas Garimella Interim Report: Fundamental understanding of heat and mass transfer in the ammonia/water absorber (2006). Air-conditioning and refrigeration technology institute Under ARTI 21CR Program Contract Number. Available at: https://ru.scribd.com/document/185766866/Tranferencia-de-Mas
  16. Kim, D. S., Infante Ferreira, C. A. (2005). Final report K-SOLAR: Air-cooled solar absorption air conditioning. Delft University of Technology.
  17. Kuzakon, V. M., Vasyliv, O. B., Titlov, O. S., Osadchuk, Ye. O. (2015). Pat. No. 104854 UA. Sposib oderzhannia vody z atmosfernoho povitria. No. u201507386; declareted: 23.07.2015; published: 25.02.2016, Bul. No. 4.
  18. Morosuk, L. I. (2014). Development and improvement of the heat using refrigerating machines. Refrigeration Engineering and Technology, 50 (5), 23–29. doi: https://doi.org/10.15673/0453-8307.5/2014.28695
  19. Osadchuk, E. A., Titlov, A. S., Mazurenko, S. Yu. (2014). Determination of power efficient operating conditions of absorption water-ammonia refrigerating machine in the systems for obtaining water from atmospheric air. Refrigeration Engineering and Technology, 50 (4), 54–57. doi: https://doi.org/10.15673/0453-8307.4/2014.28054
  20. Titlov, A. S. (2006). Nauchno-tekhnicheskie osnovy energosberezheniya pri proektirovanii holodil'nyh apparatov s absorbcionno-diffuzionnymi holodil'nymi mashinami. Naukovi pratsi Odeskoi natsionalnoi akademiyi kharchovykh tekhnolohiy, 1 (29), 194–200.
  21. Mirmov, I. N. (2011). The use of solar energy and secondary sources of heat to produce cold. Holodil'naya tekhnika, 9, 44–48.
  22. Yildiz, A., Ersöz, M. A., Gözmen, B. (2014). Effect of insulation on the energy and exergy performances in Diffusion Absorption Refrigeration (DAR) systems. International Journal of Refrigeration, 44, 161–167. doi: https://doi.org/10.1016/j.ijrefrig.2014.04.021
  23. El-Shaarawi, M. A. I., Said, S. A. M., Siddiqui, M. U. (2014). Comparative analysis between constant pressure and constant temperature absorption processes for an intermittent solar refrigerator. International Journal of Refrigeration, 41, 103–112. doi: https://doi.org/10.1016/j.ijrefrig.2013.12.019
  24. Acuña, A., Velázquez, N., Cerezo, J. (2013). Energy analysis of a diffusion absorption cooling system using lithium nitrate, sodium thiocyanate and water as absorbent substances and ammonia as the refrigerant. Applied Thermal Engineering, 51 (1-2), 1273–1281. doi: https://doi.org/10.1016/j.applthermaleng.2012.10.046
  25. Ishchenko, I. M., Titlov, O. S. (2018). Improvement of regime parameters of water-absorbing ammonia refrigeration units operating in a wide range of ambient temperatures. Refrigeration Engineering and Technology, 54 (3), 10–20. doi: https://doi.org/10.15673/ret.v54i3.1096
  26. Titlov, O. S., Ischenko, I. M. (2014). Pat. No. 111387 UA. Method of controlling the absorption refrigerating device. No. a201406025; declareted: 02.06.2014; published: 25.04.2016, Bul. No. 8.
  27. Kimball, B. A. (1985). Cooling performance and efficiency of night sky radiators. Solar Energy, 34 (1), 19–33. doi: https://doi.org/10.1016/0038-092x(85)90089-1
  28. Tsoy, A. P., Granovsky, A. S., Tsoy, D. A., Baranenko, A. V. (2014). Climate influence on the operation of refrigeration system using the effective radiation into space. Holodil'naya tekhnika, 12, 36–41.
  29. Yong, C., Yiping, W., Li, Z. (2015). Performance analysis on a building-integrated solar heating and cooling panel. Renewable Energy, 74, 627–632. doi: https://doi.org/10.1016/j.renene.2014.08.076
  30. Zhou, Z., Sun, X., Bermel, P. (2016). Radiative cooling for thermophotovoltaic systems. Infrared Remote Sensing and Instrumentation XXIV. doi: https://doi.org/10.1117/12.2236174
  31. Prommajak, T., Phonruksa, J., Pramuang, S. (2008). Passive cooling of air at night by the nocturnal radiation in Loei, Thailand. Int. J. Renew. Energy, 3 (1), 33–40.
  32. Bourdakis, E., Kazanci, O. B., Grossule, F., Olesen, B. W. (2016). Simulation Study of Discharging PCM Ceiling Panels through Night – time Radiative Cooling. ASHRAE Annual Conference.
  33. Imroz Sohel, M., Ma, Z., Cooper, P., Adams, J., Niccol, L., Gschwander, S. (2014). A Feasibility Study of Night Radiative Cooling of BIPVT in Climatic Conditions of Major Australian Cities. Asia – Pacific solar research conference.
  34. Bosholm, F., López-Navarro, A., Gamarra, M., Corberán, J. M., Payá, J. (2016). Reproducibility of solidification and melting processes in a latent heat thermal storage tank. International Journal of Refrigeration, 62, 85–96. doi: https://doi.org/10.1016/j.ijrefrig.2015.10.016
  35. Sutyaginsky, M. A., Maksimenko, V. A., Potapov, Y. A., Suvorov, A. P., Dubok, V. N. (2016). The Use of Low-temperature Potential of the Environment in Energy-efficient Refrigeration Supply Technologies of the Enterprises of GC “Titan”. Procedia Engineering, 152, 361–365. doi: https://doi.org/10.1016/j.proeng.2016.07.715
  36. Berdahl, P., Martin, M., Sakkal, F. (1983). Thermal performance of radiative cooling panels. International Journal of Heat and Mass Transfer, 26 (6), 871–880. doi: https://doi.org/10.1016/s0017-9310(83)80111-2
  37. Alekseev, V. A. (2016). Osnovy proektirovaniya teplovyh akkumulyatorov kosmicheskih apparatov. Kursk: Naukom, 248.
  38. Galimova, L. V. (1997). Absorbcionniy holodil'nye mashiny i teplovye nasosy. Astrahan': Izd-vo AGTU, 166.
  39. Morozyuk, T. V. (2006). Teoriya holodil'nyh mashin i teplovyh nasosov. Odessa: Studiya «Negociant», 712.
  40. Sathyabhama, A., Ashok, B. (2008). Thermodynamic simulation of ammonia-water absorption refrigeration system. Thermal Science, 12 (2), 45–53. doi: https://doi.org/10.2298/tsci0803045s
  41. Vasil'ev, L. L., Grakovich, L. P., Hrustalev, D. K. (1988). Teplovye truby v sistemah s vozobnovlyaemymi istochnikami energii. Minsk: Nauka i tekhnika, 159.
  42. Solnechnaya teploenergetika. Elektroenergetika i ohrana okruzhayushchey sredy. Funkcionirovanie energetiki v sovremennom mire. Available at: http://energetika.in.ua/ru/books/book-5/part-1/section-2/2-1/2-1-1

Downloads

Published

2019-04-16

How to Cite

Titlov, A., Osadchuk, E., Tsoy, A., Alimkeshova, A., & Jamasheva, R. (2019). Development of cooling systems on the basis of absorption water-ammonia refrigerating machines of low refrigeration capacity. Eastern-European Journal of Enterprise Technologies, 2(8 (98), 57–67. https://doi.org/10.15587/1729-4061.2019.164301

Issue

Section

Energy-saving technologies and equipment