Development of a method for geometrical modeling of the airfoil profile of an axial turbomachine blade

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.180915

Keywords:

axial turbine, blade profile, geometric modeling, natural parameterization, curvature distribution laws

Abstract

A method for geometric modeling of the contours of the suction and the pressure side profiles of axial turbomachine blades described by compound curves and formed by two sections has been proposed. Each section of the profile contour was modeled by a curve described in a natural parameterization. The cubic law of curvature distribution was applied to the leading sections of the profile and square law was used for the trailing section. Juncture of the leading and trailing sections of the profiles of the suction and the pressure side was provided with smoothness of the third order which assumes equality of values of functions, function derivatives, curvature and curvature derivatives in the junction point. When modeling the blade profile, thirteen kinematic and geometric parameters were used. Unknown coefficients of the square and cubic laws of distribution as well as lengths of the profile arcs of the suction and the pressure side sections were determined in the process of modeling the profile cascade for specified parameters. The problem was solved by minimizing deviations of the plotted curves from the reference points of the modeled profile located in the throat of the blade channel and on the circle, which determines maximum thickness of the profile.

Based on the proposed method, a program code was developed which in addition to the digital information on the modeled turbomachine blade profile displays the results in a graphical form on a computer screen. The calculation studies confirmed feasibility of the proposed advanced method of modeling the suction and the pressure side profiles of axial turbine blades. The developed method can be useful in organizations engaged in the design and manufacture of blades of axial gas turbines of gas turbine engines

Author Biographies

Valeriy Borisenko, Mykolaiv V. O. Sukhomlynskyi National University Nikolska str., 24, Mykolayiv, Ukraine, 54001

Doctor of Technical Sciences, Professor

Department of Information Technology

Serhiy Ustenko, Odessa National Polytechnic University Shevchenka av., 1, Odessa, Ukraine, 65044

Doctor of Technical Sciences, Associate Professor

Department of IT Designing Training

Iryna Ustenko, Admiral Makarov National University of Shipbuilding Heroiv Ukrainy ave., 9, Mykolayiv, Ukraine, 54025

PhD, Associate Professor

Department of Automated Systems Software

Kateryna Kuzma, Mykolaiv V. O. Sukhomlynskyi National University Nikolska str., 24, Mykolayiv, Ukraine, 54001

PhD

Department of Information Technology

References

  1. Boyko, A. V., Govorushchenko, Yu. N., Burlaka, M. V. (2010). Metody parametricheskoy optimizatsii navala napravlyayushchih turbinnyh lopatok. Vestnik Nats. tehn. un-ta "KhPI": sb. nauch. tr. Temat. vyp.: Energeticheskie i teplotehnicheskie protsessy i oborudovanie, 2, 13–21.
  2. Homylev, S. A., Rudenko, V. T., Lyusina, A. V. (2011). Chislennoe issledovanie vliyaniya formy peredney kromki na effektivnost' turbinnoy reshetki. Vestnik Nats. tehn. un-ta "KhPI": sb. nauch. tr. Temat. vyp.: Energeticheskie i teplotehnicheskie protsessy i oborudovanie, 5, 45–50.
  3. Mamaev, B. I., Mityushkin, Yu. I. (2006). Calculating axisymmetric gas flow trough vane row of turbine stage of non-traditional design. Problemy energetiki, 7-8, 3–11.
  4. Levina, M. E., Grebnev, V. K. (1996). Vliyanie geometricheskih harakteristik turbinnoy stupeni na radial'niy gradient reaktivnosti. Teploenergetika, 1, 43–48.
  5. Mengistu, T., Ghaly, W. (2008). Aerodynamic optimization of turbomachinery blades using evolutionary methods and ANN-based surrogate models. Optimization and Engineering, 9 (3), 239–255. doi: https://doi.org/10.1007/s11081-007-9031-1
  6. Deych, M. E., Filippov, G. A., Lazarev, L. Ya. (1965). Atlas profiley reshetok osevyh turbin. Moscow: Mashinostroenie, 96.
  7. Elqussas, N., Elzahaby, A., Khalil, M., Elshabka, A. (2018). Automated axial flow turbine design with performance prediction. Journal of Engineering Science and Military Technologies, 2 (2), 72–81. doi: https://doi.org/10.21608/ejmtc.2017.1694.1058
  8. Adnan, F. P., Hartono, F. (2018). Design of Single Stage Axial Turbine with Constant Nozzle Angle Blading for Small Turbojet. Journal of Physics: Conference Series, 1005, 012026. doi: https://doi.org/10.1088/1742-6596/1005/1/012026
  9. Levenberg, V. D., Borisenko, V. D., Gil'mutdinov, L. A. (1980). Analiticheskoe profilirovanie turbinnyh reshetok dlya sistemy avtomatizirovannogo proektirovaniya. Nikolaev: NKI, 51.
  10. Deych, M. E., Filippov, G. A., Nauman, V. I. (1964). Lemniskatniy metod postroeniya profiley dozvukovyh reshetok. Teploenergetika, 7, 74–78.
  11. Zhuravlev, V. A. (1970). Analiticheskiy metod postroeniya profiley turbinnyh lopatok GTD. Trudy RIIGA, 187, 90–108.
  12. Souverein, L., Veggi, L., Sudhof, S. et. al. (2017). On the effect of axial turbine rotor blade design on efficiency: a parametric study of the Baljé-diagram. 7th European conference for aeronautics and space sciences (EUCASS). doi: http://doi.org/10.13009/EUCASS2017-241
  13. Aronov, B. M. (1971). Metod analiticheskogo proektirovaniya profiley lopatok osevyh gazovyh turbin. Aviatsionnaya tehnika, 1, 129–136.
  14. Pritchard, L. J. (1985). An Eleven Parameter Axial Turbine Airfoil Geometry Model. Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery. doi: https://doi.org/10.1115/85-gt-219
  15. Slitenko, A. F., Kuz'menko, A. A. (1988). Postroenie reshetok turbinnyh profiley s pomoshch'yu polinomov Beziera-Bernshteyna. IVUZ "Mashinostroenie", 9, 77–81.
  16. Polikarpov, A. L. (1991). Primenenie sostavnyh krivyh Bez'e dlya postroeniya reshetok turbinnyh profiley. IVUZ "Energetika", 3, 89–93.
  17. Vinogradov, L. V., Alekseev, A. P., Kostjukov, A. V. (2013). Turbine blade profile of curves Bezier. Vestnik Rossiyskogo universiteta druzhby narodov. Seriya: Inzhenernye issledovaniya, 3, 10–15.
  18. Ramana Murthy, S. V., Kishore Kumar, S. (2014). Development and validation of a Bezier curve based profile generation method for axial flow turbines. International journal of scientific and technology research, 3 (12), 187–192.
  19. Gribin, V. G., Tishchenko, A. A., Gavrilov, I. Y. et. al. (2017). Turbine blade profile design using Bezier curves. Proceedings of 12th European Conference on Turbomachinery Fluid dynamics & Thermodynamics ETC12. Stockholm.
  20. Karelin, A. M. (1989). Postroenie reshetki turbinnyh profiley na osnove ratsional'nyh parametricheskih krivyh. Lopatochnye mashiny i struynye apparaty, 9, 79–89.
  21. Ghaly, W. S., Mengistu, T. T. (2003). Optimal geometric representation of turbomachinery cascades using NURBS. Inverse Problems in Engineering, 11 (5), 359–373. doi: http://doi.org/10.1080/1068276031000086778
  22. Sindhu, N., Chikkanna, N. (2017). Design and analysis of gas turbine blade. International Journal for Research in Applied Science & Engineering Technology, 5 (VI), 1097–1104.
  23. Borisenko, V., Ustenko, S., Ustenko, I. (2019). Development of the method for geometric modeling of S-shaped camber line of the profile of an axial compressor blade. Eastern-European Journal of Enterprise Technologies, 1 (1 (97)), 16–23. doi: https://doi.org/10.15587/1729-4061.2019.154270
  24. Hooke, R., Jeeves, T. A. (1961). ''Direct Search'' Solution of Numerical and Statistical Problems. Journal of the ACM, 8 (2), 212–229. doi: https://doi.org/10.1145/321062.321069

Downloads

Published

2019-10-16

How to Cite

Borisenko, V., Ustenko, S., Ustenko, I., & Kuzma, K. (2019). Development of a method for geometrical modeling of the airfoil profile of an axial turbomachine blade. Eastern-European Journal of Enterprise Technologies, 5(1 (101), 29–38. https://doi.org/10.15587/1729-4061.2019.180915

Issue

Section

Engineering technological systems