Development of composition formulations, based on natural bischofite, to protect wood from fire
Abstract
Keywords
References
Kryvenko, P., Tsapko, Y., Guzii, S., Kravchenko, A. (2016). Determination of the effect of fillers on the intumescent ability of the organic-inorganic coatings of building constructions. Eastern-European Journal of Enterprise Technologies, 5 (10 (83)), 26–31. doi: https://doi.org/10.15587/1729-4061.2016.79869
Mačiulaitis, R., Praniauskas, V., Yakovlev, G. (2013). Research into the fire properties of wood products most frequently used in construction. Journal of Civil Engineering and Management, 19 (4), 573–582. doi: https://doi.org/10.3846/13923730.2013.810169
Tychyna, N. A. (2015). Highly effective fire retardants for reducing of combustibility of construction wood and cellulose-containing materials. Wschodnioeuropejskie Czasopismo Naukowe (East European Scientific Journal), 3 (2), 151–156 Available at: https://eesa-journal.com/wp-content/uploads/2015/11/EESJ_3_2.pdf
Tsapko, Y., Guzii, S., Kryvenko, P., Kravchenko, A. (2014). Improvement of method of determining fireproof properties of coating and wood treatment quality. Eastern-European Journal of Enterprise Technologies, 2 (11 (68)), 40–43. doi: https://doi.org/10.15587/1729-4061.2014.23390
Tychino, N. (2016). Fire protection of materials, products and structures made of wood: tests and economy. Problems of modern science and education, 62. doi: https://doi.org/10.20861/2304-2338-2016-62-001
Wen, M.-Y., Kang, C.-W., Park, H.-J. (2014). Impregnation and mechanical properties of three softwoods treated with a new fire retardant chemical. Journal of Wood Science, 60 (5), 367–375. doi: https://doi.org/10.1007/s10086-014-1408-0
Fomichev, V. T., Kamkova, S. V., Filimonova, N. A. (2012). Increase of bioproofness of construction materials. Vestnik Volgogradskogo gosudarstvennogo arhitekturno-stroitel'nogo universiteta, 27 (46), 34–38. Available at: https://elibrary.ru/item.asp?id=18000476
Leonovich, O. K. (2008). Bioognezashchita drevesiny sostavami na osnove bishofita s obrazovaniem trudnorastvorimyh kompleksov. Trudy Belorusskogo gosudarstvennogo tehnologicheskogo universiteta. Seriya 2. Lesnaya i derevoobrabatyvayushchaya promyshlennost', 2, 273–275. Available at: https://elibrary.ru/item.asp?id=23834097
Ratajczak, I., Woźniak, M., Kwaśniewska-Sip, P., Szentner, K., Cofta, G., Mazela, B. (2017). Chemical characterization of wood treated with a formulation based on propolis, caffeine and organosilanes. European Journal of Wood and Wood Products, 76 (2), 775–781. doi: https://doi.org/10.1007/s00107-017-1257-9
Liu, W., Xu, H., Shi, X., Yang, X., Wang, X. (2019). Improved Lime Method to Prepare High-Purity Magnesium Hydroxide and Light Magnesia from Bischofite. JOM. doi: https://doi.org/10.1007/s11837-019-03602-9
Petrushanko, T. A. (2018). Ispol'zovanie unikal'nogo minerala Bishofit Poltavskiy v stomatologicheskoy praktike. Stomatologiya. Estetika. Innovatsii, 2 (1), 157–159. Available at: http://elib.umsa.edu.ua/jspui/bitstream/umsa/7307/1/Use%20of%20the%20unique%20mineral%20Bishofit%20Poltavsky%20in%20dental%20practice.pdf
Achkeeva, M. V., Romanyuk, N. V., Avdyushkina, L. I., Frolova, E. A., Kondakov, D. F., Khomyakov, D. M. et. al. (2014). Anti-icing agents based on magnesium and sodium acetates and chlorides. Theoretical Foundations of Chemical Engineering, 48 (4), 461–467. doi: https://doi.org/10.1134/s0040579514040022
Majorova, A. V., Sysuev, B. B., Soldatov, V. O., Hanalieva, I. A., Puchenkova, O. A., Bystrova, N. A. (2018). Effects of bischofite gel on reparative processes in wound healing. Asian Journal of Pharmaceutics, 12 (4), S1278–S1281. doi: https://doi.org/10.22377/ajp.v12i04.2923
Zhang, H., Cao, T., Cheng, Y. (2014). Synthesis of nanostructured MgO powders with photoluminescence by plasma-intensified pyrohydrolysis process of bischofite from brine. Green Processing and Synthesis, 3 (3). doi: https://doi.org/10.1515/gps-2014-0026
Gurses, P., Yildirim, M., Kipcak, A. S., Yuksel, S. A., Derun, E. M., Piskin, S. (2015). The characterisation of mcallisterite synthesised from bischofite via the hydrothermal method. Main Group Chemistry, 14 (3), 199–213. doi: https://doi.org/10.3233/mgc-150163
Fedorenko, V. F., Buklagin, D. S., Golubev, I. G., Nemenushchaya, L. A. (2015). Review of Russian nanoagents for crops treatment. Nanotechnologies in Russia, 10 (3-4), 318–324. doi: https://doi.org/10.1134/s199507801502010x
Komarova, Z. B., Zlobina, E. Y., Starodubova, Y. V. (2015). Nitrogen balance and protein transformation in rations of piglets in the pig production. Svinovodstvo, 1, 51–53. Available at: https://elibrary.ru/item.asp?id=22831852
Bustos, M., Cordo, O., Girardi, P., Pereyra, M. (2015). Evaluation of the Use of Magnesium Chloride for Surface Stabilization and Dust Control on Unpaved Roads. Transportation Research Record: Journal of the Transportation Research Board, 2473 (1), 13–22. doi: https://doi.org/10.3141/2473-02
Ushak, S., Marín, P., Galazutdinova, Y., Cabeza, L. F., Farid, M. M., Grágeda, M. (2016). Compatibility of materials for macroencapsulation of inorganic phase change materials: Experimental corrosion study. Applied Thermal Engineering, 107, 410–419. doi: https://doi.org/10.1016/j.applthermaleng.2016.06.171
Achkeeva, M. V., Romanyuk, N. V., Avdyushkina, L. I., Frolova, E. A., Kondakov, D. F., Khomyakov, D. M. et. al. (2014). Anti-icing agents based on magnesium and sodium acetates and chlorides. Theoretical Foundations of Chemical Engineering, 48 (4), 461–467. doi: https://doi.org/10.1134/s0040579514040022
Lizana, J., Chacartegui, R., Barrios-Padura, A., Valverde, J. M., Ortiz, C. (2018). Identification of best available thermal energy storage compounds for low-to-moderate temperature storage applications in buildings. Materiales de Construcción, 68 (331), 160. doi: https://doi.org/10.3989/mc.2018.10517
Gutierrez, A., Ushak, S., Galleguillos, H., Fernandez, A., Cabeza, L. F., Grágeda, M. (2015). Use of polyethylene glycol for the improvement of the cycling stability of bischofite as thermal energy storage material. Applied Energy, 154, 616–621. doi: https://doi.org/10.1016/j.apenergy.2015.05.040
Ushak, S., Gutierrez, A., Galleguillos, H., Fernandez, A. G., Cabeza, L. F., Grágeda, M. (2015). Thermophysical characterization of a by-product from the non-metallic industry as inorganic PCM. Solar Energy Materials and Solar Cells, 132, 385–391. doi: https://doi.org/10.1016/j.solmat.2014.08.042
Ushak, S., Gutierrez, A., Galazutdinova, Y., Barreneche, C., Cabeza, L. F., Grágeda, M. (2016). Influence of alkaline chlorides on thermal energy storage properties of bischofite. International Journal of Energy Research, 40 (11), 1556–1563. doi: https://doi.org/10.1002/er.3542
Ushak, S., Gutierrez, A., Barreneche, C., Fernandez, A. I., Grágeda, M., Cabeza, L. F. (2016). Reduction of the subcooling of bischofite with the use of nucleatings agents. Solar Energy Materials and Solar Cells, 157, 1011–1018. doi: https://doi.org/10.1016/j.solmat.2016.08.015
Gasia, J., Gutierrez, A., Peiró, G., Miró, L., Grageda, M., Ushak, S., Cabeza, L. F. (2015). Thermal performance evaluation of bischofite at pilot plant scale. Applied Energy, 155, 826–833. doi: https://doi.org/10.1016/j.apenergy.2015.06.042
Prasolov, Ye. Ya., Brazhenko, S. A. (2013). Preparing to the terms of engineers technological risks. . Eastern-European Journal of Enterprise Technologies, 3 (11 (63)), 34–37. Available at: http://journals.uran.ua/eejet/article/view/14593/12367
Ryabov, S. V., Matveev, S. A. (2001). Pat. No. 2197374 RF. Ognezashchitniy sostav dlya drevesiny (ego varianty). No. 2001113939/04; declareted: 21.05.2001; published: 27.01.2003, Bul. No. 3. Available at: http://www.freepatent.ru/patents/2197374
Kalachev, G. P., Manskaya, T. S. (1991). Pat. No. 2015157 RF. Ognezashchitniy sostav dlya drevesiny. No. 5012202/05; declareted: 25.11.1991; published: 30.06.1994. Available at: http://www.freepatent.ru/patents/2015157
Salekh Akhmed Ibragim Shaker (2011). Pat. No. 2469843 RF. Flame retardant for wood processing. No. 2011101296/13; declareted: 13.01.2011; published: 20.07.2012, Bul. No. 20. Available at: http://www.freepatent.ru/patents/2469843
Salekh Akhmed Ibragim Shaker, Gritsishin, A. M., Eliseeva, L. I. (2006). Pat. No. 2307735 RF. Aseptic fire-proof composition for wood. No. 2006109959/04; declareted: 28.03.2006; published: 10.10.2007, Bul. No. 28. Available at: http://www.freepatent.ru/patents/2307735
Fomichev, V. T., Filimonova, N. A., Komkova, S. V. (2012). Pat. No. 2497662 RF. Antiseptic fireproof composition for timber. No. 2012130730/13; declareted: 18.07.2012; published: 10.11.2013, Bul. No. 31. Available at: http://www.freepatent.ru/patents/2497662
Lebedeva, N. Sh., Nedayvodin, E. G., Sukhikh, S. D. (2017). To the question of the fire resistance of construction materials based on magnesia binder. Vestnik Voronezhskogo instituta GPS MChS Rossii, 3 (24), 65–68. Available at: https://elibrary.ru/item.asp?id=32549223
Harada, T., Matsunaga, H., Kataoka, Y., Kiguchi, M., Matsumura, J. (2009). Weatherability and combustibility of fire-retardant-impregnated wood after accelerated weathering tests. Journal of Wood Science, 55 (5), 359–366. doi: https://doi.org/10.1007/s10086-009-1039-z
GOST Style Citations
Copyright (c) 2019 Natalia Omelchenko, Viktoriia Dmytrenko, Natalia Lysenko, Anna Brailko, Maryna Martosenko

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISSN (print) 1729-3774, ISSN (on-line) 1729-4061