DOI: https://doi.org/10.15587/1729-4061.2019.181305

Development of composition formulations, based on natural bischofite, to protect wood from fire

Natalia Omelchenko, Viktoriia Dmytrenko, Natalia Lysenko, Anna Brailko, Maryna Martosenko

Abstract


We have studied the chemical composition of natural bischofite extracted from well No. 1 at Zaturin deposit and revealed that the sufficient saturation of МgСl2 allows its use as an environmentally-oriented base for composition formulations in order to protect wood from fire. Our experimental research has confirmed the efficiency of applying organic synthetic dyes (methyl orange, bromothymol blue) as coloring additives for the reported composition formulations. Technological features have been defined for using the pigment concentrates of trade marks «Amber» and «Sniezko», which form two-phase systems with a solution of natural bischofite. It has been proven that the proposed coloring additives ensure the stable wood coloration and saturated color of its surface. The efficiency of using coloring additives (bromothymol blue and methyl orange; the pigment concentrates of ТМ «Amber» and TM «Sniezko») for the developed composition formulations aimed at fire-protective treatment of wood has been confirmed under laboratory conditions. Our experimental study has established that flammability time of the timber treated with a composition formulation without coloring additives increases by 4 times compared to untreated wood. The fire-retardant mechanism of the developed composition formulations is predetermined by the successive processes of bischofite salt conversion under a temperature influence and by the addition of orthophosphoric acid, which is a strong fire retardant. Introducing the coloring additive (colorant) methyl orange to the composition formulation increases its flammability time by more than 4 times, compared to untreated wood. Thus, there is reason to argue that the developed composition formulations that contain coloring additives (colorants) are environmentally-oriented and economically feasible. At the same time, the results obtained resolve an integrated task, namely ensuring fire- and bio-protection, as well as visualizing the applied treatment of wood-based construction structures at residential buildings and non-residential facilities

Keywords


bischofite; coloring additive; pigment concentrate; composition formulation; fire-protective agent; visualization of treatment

References


Kryvenko, P., Tsapko, Y., Guzii, S., Kravchenko, A. (2016). Determination of the effect of fillers on the intumescent ability of the organic-inorganic coatings of building constructions. Eastern-European Journal of Enterprise Technologies, 5 (10 (83)), 26–31. doi: https://doi.org/10.15587/1729-4061.2016.79869

Mačiulaitis, R., Praniauskas, V., Yakovlev, G. (2013). Research into the fire properties of wood products most frequently used in construction. Journal of Civil Engineering and Management, 19 (4), 573–582. doi: https://doi.org/10.3846/13923730.2013.810169

Tychyna, N. A. (2015). Highly effective fire retardants for reducing of combustibility of construction wood and cellulose-containing materials. Wschodnioeuropejskie Czasopismo Naukowe (East European Scientific Journal), 3 (2), 151–156 Available at: https://eesa-journal.com/wp-content/uploads/2015/11/EESJ_3_2.pdf

Tsapko, Y., Guzii, S., Kryvenko, P., Kravchenko, A. (2014). Improvement of method of determining fireproof properties of coating and wood treatment quality. Eastern-European Journal of Enterprise Technologies, 2 (11 (68)), 40–43. doi: https://doi.org/10.15587/1729-4061.2014.23390

Tychino, N. (2016). Fire protection of materials, products and structures made of wood: tests and economy. Problems of modern science and education, 62. doi: https://doi.org/10.20861/2304-2338-2016-62-001

Wen, M.-Y., Kang, C.-W., Park, H.-J. (2014). Impregnation and mechanical properties of three softwoods treated with a new fire retardant chemical. Journal of Wood Science, 60 (5), 367–375. doi: https://doi.org/10.1007/s10086-014-1408-0

Fomichev, V. T., Kamkova, S. V., Filimonova, N. A. (2012). Increase of bioproofness of construction materials. Vestnik Volgogradskogo gosudarstvennogo arhitekturno-stroitel'nogo universiteta, 27 (46), 34–38. Available at: https://elibrary.ru/item.asp?id=18000476

Leonovich, O. K. (2008). Bioognezashchita drevesiny sostavami na osnove bishofita s obrazovaniem trudnorastvorimyh kompleksov. Trudy Belorusskogo gosudarstvennogo tehnologicheskogo universiteta. Seriya 2. Lesnaya i derevoobrabatyvayushchaya promyshlennost', 2, 273–275. Available at: https://elibrary.ru/item.asp?id=23834097

Ratajczak, I., Woźniak, M., Kwaśniewska-Sip, P., Szentner, K., Cofta, G., Mazela, B. (2017). Chemical characterization of wood treated with a formulation based on propolis, caffeine and organosilanes. European Journal of Wood and Wood Products, 76 (2), 775–781. doi: https://doi.org/10.1007/s00107-017-1257-9

Liu, W., Xu, H., Shi, X., Yang, X., Wang, X. (2019). Improved Lime Method to Prepare High-Purity Magnesium Hydroxide and Light Magnesia from Bischofite. JOM. doi: https://doi.org/10.1007/s11837-019-03602-9

Petrushanko, T. A. (2018). Ispol'zovanie unikal'nogo minerala Bishofit Poltavskiy v stomatologicheskoy praktike. Stomatologiya. Estetika. Innovatsii, 2 (1), 157–159. Available at: http://elib.umsa.edu.ua/jspui/bitstream/umsa/7307/1/Use%20of%20the%20unique%20mineral%20Bishofit%20Poltavsky%20in%20dental%20practice.pdf

Achkeeva, M. V., Romanyuk, N. V., Avdyushkina, L. I., Frolova, E. A., Kondakov, D. F., Khomyakov, D. M. et. al. (2014). Anti-icing agents based on magnesium and sodium acetates and chlorides. Theoretical Foundations of Chemical Engineering, 48 (4), 461–467. doi: https://doi.org/10.1134/s0040579514040022

Majorova, A. V., Sysuev, B. B., Soldatov, V. O., Hanalieva, I. A., Puchenkova, O. A., Bystrova, N. A. (2018). Effects of bischofite gel on reparative processes in wound healing. Asian Journal of Pharmaceutics, 12 (4), S1278–S1281. doi: https://doi.org/10.22377/ajp.v12i04.2923

Zhang, H., Cao, T., Cheng, Y. (2014). Synthesis of nanostructured MgO powders with photoluminescence by plasma-intensified pyrohydrolysis process of bischofite from brine. Green Processing and Synthesis, 3 (3). doi: https://doi.org/10.1515/gps-2014-0026

Gurses, P., Yildirim, M., Kipcak, A. S., Yuksel, S. A., Derun, E. M., Piskin, S. (2015). The characterisation of mcallisterite synthesised from bischofite via the hydrothermal method. Main Group Chemistry, 14 (3), 199–213. doi: https://doi.org/10.3233/mgc-150163

Fedorenko, V. F., Buklagin, D. S., Golubev, I. G., Nemenushchaya, L. A. (2015). Review of Russian nanoagents for crops treatment. Nanotechnologies in Russia, 10 (3-4), 318–324. doi: https://doi.org/10.1134/s199507801502010x

Komarova, Z. B., Zlobina, E. Y., Starodubova, Y. V. (2015). Nitrogen balance and protein transformation in rations of piglets in the pig production. Svinovodstvo, 1, 51–53. Available at: https://elibrary.ru/item.asp?id=22831852

Bustos, M., Cordo, O., Girardi, P., Pereyra, M. (2015). Evaluation of the Use of Magnesium Chloride for Surface Stabilization and Dust Control on Unpaved Roads. Transportation Research Record: Journal of the Transportation Research Board, 2473 (1), 13–22. doi: https://doi.org/10.3141/2473-02

Ushak, S., Marín, P., Galazutdinova, Y., Cabeza, L. F., Farid, M. M., Grágeda, M. (2016). Compatibility of materials for macroencapsulation of inorganic phase change materials: Experimental corrosion study. Applied Thermal Engineering, 107, 410–419. doi: https://doi.org/10.1016/j.applthermaleng.2016.06.171

Achkeeva, M. V., Romanyuk, N. V., Avdyushkina, L. I., Frolova, E. A., Kondakov, D. F., Khomyakov, D. M. et. al. (2014). Anti-icing agents based on magnesium and sodium acetates and chlorides. Theoretical Foundations of Chemical Engineering, 48 (4), 461–467. doi: https://doi.org/10.1134/s0040579514040022

Lizana, J., Chacartegui, R., Barrios-Padura, A., Valverde, J. M., Ortiz, C. (2018). Identification of best available thermal energy storage compounds for low-to-moderate temperature storage applications in buildings. Materiales de Construcción, 68 (331), 160. doi: https://doi.org/10.3989/mc.2018.10517

Gutierrez, A., Ushak, S., Galleguillos, H., Fernandez, A., Cabeza, L. F., Grágeda, M. (2015). Use of polyethylene glycol for the improvement of the cycling stability of bischofite as thermal energy storage material. Applied Energy, 154, 616–621. doi: https://doi.org/10.1016/j.apenergy.2015.05.040

Ushak, S., Gutierrez, A., Galleguillos, H., Fernandez, A. G., Cabeza, L. F., Grágeda, M. (2015). Thermophysical characterization of a by-product from the non-metallic industry as inorganic PCM. Solar Energy Materials and Solar Cells, 132, 385–391. doi: https://doi.org/10.1016/j.solmat.2014.08.042

Ushak, S., Gutierrez, A., Galazutdinova, Y., Barreneche, C., Cabeza, L. F., Grágeda, M. (2016). Influence of alkaline chlorides on thermal energy storage properties of bischofite. International Journal of Energy Research, 40 (11), 1556–1563. doi: https://doi.org/10.1002/er.3542

Ushak, S., Gutierrez, A., Barreneche, C., Fernandez, A. I., Grágeda, M., Cabeza, L. F. (2016). Reduction of the subcooling of bischofite with the use of nucleatings agents. Solar Energy Materials and Solar Cells, 157, 1011–1018. doi: https://doi.org/10.1016/j.solmat.2016.08.015

Gasia, J., Gutierrez, A., Peiró, G., Miró, L., Grageda, M., Ushak, S., Cabeza, L. F. (2015). Thermal performance evaluation of bischofite at pilot plant scale. Applied Energy, 155, 826–833. doi: https://doi.org/10.1016/j.apenergy.2015.06.042

Prasolov, Ye. Ya., Brazhenko, S. A. (2013). Preparing to the terms of engineers technological risks. . Eastern-European Journal of Enterprise Technologies, 3 (11 (63)), 34–37. Available at: http://journals.uran.ua/eejet/article/view/14593/12367

Ryabov, S. V., Matveev, S. A. (2001). Pat. No. 2197374 RF. Ognezashchitniy sostav dlya drevesiny (ego varianty). No. 2001113939/04; declareted: 21.05.2001; published: 27.01.2003, Bul. No. 3. Available at: http://www.freepatent.ru/patents/2197374

Kalachev, G. P., Manskaya, T. S. (1991). Pat. No. 2015157 RF. Ognezashchitniy sostav dlya drevesiny. No. 5012202/05; declareted: 25.11.1991; published: 30.06.1994. Available at: http://www.freepatent.ru/patents/2015157

Salekh Akhmed Ibragim Shaker (2011). Pat. No. 2469843 RF. Flame retardant for wood processing. No. 2011101296/13; declareted: 13.01.2011; published: 20.07.2012, Bul. No. 20. Available at: http://www.freepatent.ru/patents/2469843

Salekh Akhmed Ibragim Shaker, Gritsishin, A. M., Eliseeva, L. I. (2006). Pat. No. 2307735 RF. Aseptic fire-proof composition for wood. No. 2006109959/04; declareted: 28.03.2006; published: 10.10.2007, Bul. No. 28. Available at: http://www.freepatent.ru/patents/2307735

Fomichev, V. T., Filimonova, N. A., Komkova, S. V. (2012). Pat. No. 2497662 RF. Antiseptic fireproof composition for timber. No. 2012130730/13; declareted: 18.07.2012; published: 10.11.2013, Bul. No. 31. Available at: http://www.freepatent.ru/patents/2497662

Lebedeva, N. Sh., Nedayvodin, E. G., Sukhikh, S. D. (2017). To the question of the fire resistance of construction materials based on magnesia binder. Vestnik Voronezhskogo instituta GPS MChS Rossii, 3 (24), 65–68. Available at: https://elibrary.ru/item.asp?id=32549223

Harada, T., Matsunaga, H., Kataoka, Y., Kiguchi, M., Matsumura, J. (2009). Weatherability and combustibility of fire-retardant-impregnated wood after accelerated weathering tests. Journal of Wood Science, 55 (5), 359–366. doi: https://doi.org/10.1007/s10086-009-1039-z


GOST Style Citations








Copyright (c) 2019 Natalia Omelchenko, Viktoriia Dmytrenko, Natalia Lysenko, Anna Brailko, Maryna Martosenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061