Development of a comprehensive approach to determining the rational parameters of an onboard capacitive energy accumulator for a subway train

Authors

  • Andriy Sulym State Enterprise «Ukrainian Scientific Railway Car Building Research Institute» I. Prykhodka str., 33, Kremenchuk, Ukraine, 39621, Ukraine https://orcid.org/0000-0001-8144-8971
  • Oleksij Fomin State University of Infrastructure and Technologies Kyrylivska str., 9, Kyiv, Ukraine, 04071, Ukraine https://orcid.org/0000-0003-2387-9946
  • Pavlo Khozia State Enterprise «Ukrainian Scientific Railway Car Building Research Institute» I. Prykhodka str., 33, Kremenchuk, Ukraine, 39621, Ukraine https://orcid.org/0000-0001-8948-6032
  • Oleksii Palant O. M. Beketov National University of Urban Economy in Kharkiv Marshala Bazhanova str., 17, Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0001-8178-6874
  • Vyacheslav Stamatin Municipal Enterprise "Kharkiv Metro" Rizdviana str., 29, Kharkiv, Ukraine, 61052 O. M. Beketov National University of Urban Economy in Kharkiv Marshala Bazhanova str., 17, Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0003-3441-567X

DOI:

https://doi.org/10.15587/1729-4061.2019.183304

Keywords:

onboard capacitive energy accumulator, subway train, regenerative braking, accumulation system

Abstract

One of the essential, yet insufficiently studied, issues related to the implementation of onboard capacitive energy accumulators in the subway is determining their rational parameters (power and energy intensity). We have analyzed existing methods and approaches to choosing the parameters for onboard capacitive energy accumulators. Disadvantages for each method and approach have been defined. We have substantiated the need to devise an approach that would make it possible to fully account for the factors influencing actual conditions of a subway train operation. Existing methods and approaches to selecting rational parameters have deficiencies and do not take into consideration the factors of real operating conditions of a subway train. This paper has proposed a comprehensive approach that takes into account the specified factors of influence and makes it possible to choose rational parameters for an onboard capacitive energy accumulator based on two indicators: the weight and cost of an accumulation system. We have determined the rational parameters for an onboard capacitive energy accumulator for the predefined operating conditions of a subway train using a comprehensive approach. The amount of saved electric power due to the implementation of an onboard accumulator with rational parameters has been calculated. The research results could be used when designing, constructing, and introducing the subway rolling stock with an onboard capacitive energy accumulator, as well as during an expert estimation of the amount of energy saved

Author Biographies

Andriy Sulym, State Enterprise «Ukrainian Scientific Railway Car Building Research Institute» I. Prykhodka str., 33, Kremenchuk, Ukraine, 39621

PhD, Deputy Director

Oleksij Fomin, State University of Infrastructure and Technologies Kyrylivska str., 9, Kyiv, Ukraine, 04071

Doctor of Technical Sciences, Professor

Department of Cars and Carriage Facilities

Pavlo Khozia, State Enterprise «Ukrainian Scientific Railway Car Building Research Institute» I. Prykhodka str., 33, Kremenchuk, Ukraine, 39621

PhD, Senior Researcher, Head of Laboratory

Research Laboratory for Experimental Study of Railway Engineering

Oleksii Palant, O. M. Beketov National University of Urban Economy in Kharkiv Marshala Bazhanova str., 17, Kharkiv, Ukraine, 61002

Doctor of Economic Sciences, Associate Professor

Department of Business Economics and Business Administration

Vyacheslav Stamatin, Municipal Enterprise "Kharkiv Metro" Rizdviana str., 29, Kharkiv, Ukraine, 61052 O. M. Beketov National University of Urban Economy in Kharkiv Marshala Bazhanova str., 17, Kharkiv, Ukraine, 61002

СЕО

Postgraduate student

Department of Business Economics and Business Administration

References

  1. Sablin, O. (2014). Study of the efficiency of the electric energy recovery process in the subway. Eastern-European Journal of Enterprise Technologies, 6 (8 (72)), 9–13. doi: https://doi.org/10.15587/1729-4061.2014.30483
  2. Zhemerov, G. G., Ilyina, N. О., Tugay, D. V. (2014). Reduction of energy losses in subway rolling-stock energy supply systems using energy-consuming storages. Tekhnichna elektrodynamika, 5, 137–138.
  3. Shevlyugin, M. V., Zheltov, K. S. (2008). On reduction of electric power consumption in Moscow underground by application of capacitive energy storage devices. Nauka i tehnika transporta, 1, 15–20.
  4. Ciccarelli, F., Iannuzzi, D., Tricoli, P. (2012). Control of metro-trains equipped with onboard supercapacitors for energy saving and reduction of power peak demand. Transportation Research Part C: Emerging Technologies, 24, 36–49. doi: https://doi.org/10.1016/j.trc.2012.02.001
  5. Allegre, A.-L., Bouscayrol, A., Delarue, P., Barrade, P., Chattot, E., El-Fassi, S. (2010). Energy Storage System With Supercapacitor for an Innovative Subway. IEEE Transactions on Industrial Electronics, 57 (12), 4001–4012. doi: https://doi.org/10.1109/tie.2010.2044124
  6. Ciccarelli, F. (2014). Energy management and control strategies for the use of supercapacitors storage technologies in urban railway traction systems. PHD School in Industrial Engineering, 330.
  7. Szênâsy, I. (2009). New energy management of capacitive energy storage in metro railcar by simulation. Acta Technica Jaurinensis, 2 (1), 117–131.
  8. Mensah-Darkwa, K., Zequine, C., Kahol, P., Gupta, R. (2019). Supercapacitor Energy Storage Device Using Biowastes: A Sustainable Approach to Green Energy. Sustainability, 11 (2), 414. doi: https://doi.org/10.3390/su11020414
  9. Limanskiy, S. S. (2010). Pat. No. RU 2436690 C2 RF. Sposob dvizheniya elektricheskogo transportnogo sredstva na rekuperirovannoy elektroenergii i ustroystvo dlya ego osushchestvleniya. MPK B60L 7/12. No. 2010104636/11; declareted: 11.02.2010; published: 20.12.2011. Bul. No. 35, 18.
  10. Eliseev, A. D., Fursov, S. A. (2015). Superkondensatory Nesscap povyshayut energoeffektivnost' elektroprivodov. Elektronnye komponenty, 2, 80–83.
  11. Kossov, E. E., Nikipelyy, S. O. (2010). Primenenie nakopiteley maloy energoemkosti v silovoy tsepi teplovoza. Visnyk Skhidnoukrainskoho nats. un-tu im. V. Dalia, 5 (147), 246–248.
  12. Shchurov, N. I., Shcheglov, K. V., Shtang, A. A. (2008). Primenenie nakopiteley energii v sistemah elektricheskoy tyagi. Sbornik nauchnyh trudov NGTU, 1 (51), 99–104.
  13. Riabov, E. S. (2015). Defining the parameters of an energy storage for an electrorolling stock with asynchronous traction drive under the limited current in the traction network. Visnyk Natsionalnoho tekhnichnoho universytetu «Kharkivskyi politekhnichnyi instytut», 6 (1115), 132–137.
  14. Rybalko, A. Ya., Dybrin, S. V. (2008). Vybor emkosti nakopitelya energii dlya obespecheniya snizheniya maksimuma potreblyaemoy moshchnosti. Gorniy informatsionno-analiticheskiy byulleten' (nauchno-tehnicheskiy zhurnal), 8, 356–361.
  15. Kostin, N. A., Nikitenko, A. V. (2014). Avtonomnost' rekuperativnogo tormozheniya – osnova nadezhnoy energoeffektivnoy rekuperatsii na elektropodvizhnom sostave postoyannogo toka. Zaliznychnyi transport Ukrainy, 3, 15–23.
  16. Sulym, A. O., Fomin, O. V., Khozia, P. O., Mastepan, A. G. (2018). Theoretical and practical determination of parameters of on-board capacitive energy storage of the rolling stock. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 79–87. doi: https://doi.org/10.29202/nvngu/2018-5/8
  17. Mukha, А. M., Kostin, М. О., Kurylenko, О. Y., Tsyplia, H. V. (2017). Enhancing the operational efficiency of direct current drive based on use of supercondenser power storage units. Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport, 5 (71), 48–60. doi: https://doi.org/10.15802/stp2017/114624
  18. Gorobchenko, O., Fomin, O., Fomin, V., Kovalenko, V. (2018). Study of the influence of electric transmission parameters on the efficiency of freight rolling stock of direct current. Eastern-European Journal of Enterprise Technologies, 1 (3 (91)), 60–67. doi: https://doi.org/10.15587/1729-4061.2018.121713
  19. Myatezh, A. V., Yaroslavtsev, M. V. (2013). Opredelenie energoemkosti bortovogo bufernogo kondensatornogo nakopitelya energii dlya gorodskogo elektricheskogo transporta. Transport Rossiyskoy Federatsii, 4 (47), 62–65.
  20. Fomin, O., Sulym, A., Kulbovskyi, I., Khozia, P., Ishchenko, V. (2018). Determining rational parameters of the capacitive energy storage system for the underground railway rolling stock. Eastern-European Journal of Enterprise Technologies, 2 (1 (92)), 63–71. doi: https://doi.org/10.15587/1729-4061.2018.126080
  21. Bayryeva, L. S., Prokopovich, A. V. (2004). Teoriya elektricheskoy tyagi. Moscow: Izdatel'stvo MEI, 40.
  22. Rozenfel'd, V. E., Isaev, I. P., Sidorov, N. N., Ozerov, M. I.; Isaev, I. P. (Ed.) (1995). Teoriya elektricheskoy tyagi. Moscow: Transport, 294.
  23. Sulim, A. A. (2015). Povyshenie effektivnosti energoobespecheniya podvizhnogo sostava metropolitena s sistemami rekuperatsii putem primeneniya emkostnyh nakopiteley energii. Kyiv, 188.
  24. SOU MPP 45.060-253:2008. Vahony metropolitenu. Zahalni tekhnichni vymohy (2008). Kyiv: Ministerstvo promyslovoi polityky Ukrainy, 29.
  25. Tkachenko, V., Sapronova, S., Kulbovskiy, I., Fomin, O. (2017). Research into resistance to the motion of railroad undercarriages related to directing the wheelsets by a rail track. Eastern-European Journal of Enterprise Technologies, 5 (7 (89)), 65–72. doi: https://doi.org/10.15587/1729-4061.2017.109791

Downloads

Published

2019-11-12

How to Cite

Sulym, A., Fomin, O., Khozia, P., Palant, O., & Stamatin, V. (2019). Development of a comprehensive approach to determining the rational parameters of an onboard capacitive energy accumulator for a subway train. Eastern-European Journal of Enterprise Technologies, 6(3 (102), 28–38. https://doi.org/10.15587/1729-4061.2019.183304

Issue

Section

Control processes