Determination of parameters of the carbon­containing materials gasification process in the rotary kiln cooler drum

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.210767

Keywords:

rotary kiln, cooler drum, carbon-containing material, heat treatment, gasification, syngas, numerical simulation

Abstract

An assessment of the feasibility of using the existing equipment of a rotary kiln cooler drum for heat treatment of a carbon-containing filler to produce synthesis gas using production waste in the form of a dust fraction of heat-treated petroleum coke or anthracite is carried out. A mathematical model of the process of gasification of carbon particles is formulated in the continuous-discrete formulation, including thirteen global reactions, of which four are heterogeneous and nine are homogeneous. A numerical model of gasification of a dust fraction of a carbon-containing filler in the rotary kiln cooler drum in the axisymmetric formulation is developed. The convergence of the numerical solution of the gasification problem by the grid step is investigated. It is found that the computational grid, which includes 73,620 cells and 75,202 nodes, leads to an error in determining the main parameters of the model of no more than 1–2 %. Verification of the developed numerical model is performed. It is found that the difference between the molar fractions of CO and H2, the values of which were obtained by various software products (Fluent, NASA CEA), is in the range of (2.8...5.8) %. Using the developed numerical model of the process of gasification of a carbon-containing filler in the rotary kiln cooler drum, the quantitative composition of the combustible components of the syngas for different initial parameters is determined. It is found that with the ratio О2/С=(42.7...51.6) %, the predicted quantitative composition of the combustible gases of synthesis gas in molar fractions is СО=(32.8...36.9 )%, Н2=(17.1...18.4) % and CH4=(0.03...0.16) %. The possibility of using the NASA CEA program, intended for operational calculations of equilibrium chemistry, for engineering calculations of the material composition of synthesis gas of industrial furnace equipment, is shown

Author Biographies

Anton Karvatskii, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor, Senior Researcher

Department of Chemical, Polymer and Silicate Engineering

Taras Lazariev, Yuzhnoye Design Office Kryvorizhska str., 3, Dnipro, Ukraine, 49008

PhD, Leading Researcher

Serhii Leleka, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Senior Researcher

Scientific Research Center "Resource-saving Technologies"

Ihor Mikulionok, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor, Senior Researcher

Department of Chemical, Polymer and Silicate Engineering

Olena Ivanenko, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of Ecology and Plant Polymers Technology

References

  1. Liu, X. J., Zhang, W. R., Park, T. J. (2001). Modelling coal gasification in an entrained flow gasifier. Combustion Theory and Modelling, 5 (4), 595–608. doi: https://doi.org/10.1088/1364-7830/5/4/305
  2. Choi, Y. C., Li, X. Y., Park, T. J., Kim, J. H., Lee, J. G. (2001). Numerical study on the coal gasification characteristics in an entrained flow coal gasifier. Fuel, 80 (15), 2193–2201. doi: https://doi.org/10.1016/s0016-2361(01)00101-6
  3. Shi, S.-P., Zitney, S. E., Shahnam, M., Syamlal, M., Rogers, W. A. (2006). Modelling coal gasification with CFD and discrete phase method. Journal of the Energy Institute, 79 (4), 217–221. doi: https://doi.org/10.1179/174602206x148865
  4. Watanabe, H., Otaka, M. (2006). Numerical simulation of coal gasification in entrained flow coal gasifier. Fuel, 85 (12-13), 1935–1943. doi: https://doi.org/10.1016/j.fuel.2006.02.002
  5. Wu, Y., Zhang, J., Smith, P. J., Zhang, H., Reid, C., Lv, J., Yue, G. (2010). Three-Dimensional Simulation for an Entrained Flow Coal Slurry Gasifier. Energy & Fuels, 24 (2), 1156–1163. doi: https://doi.org/10.1021/ef901085b
  6. Liu, H., Cattolica, R. J., Seiser, R. (2017). Operating parameter effects on the solids circulation rate in the CFD simulation of a dual fluidized-bed gasification system. Chemical Engineering Science, 169, 235–245. doi: https://doi.org/10.1016/j.ces.2016.11.040
  7. Zhang, Y., Lei, F., Xiao, Y. (2015). Computational fluid dynamics simulation and parametric study of coal gasification in a circulating fluidized bed reactor. Asia-Pacific Journal of Chemical Engineering, 10 (2), 307–317. doi: https://doi.org/10.1002/apj.1878
  8. Zhong, W., Yu, A., Zhou, G., Xie, J., Zhang, H. (2016). CFD simulation of dense particulate reaction system: Approaches, recent advances and applications. Chemical Engineering Science, 140, 16–43. doi: https://doi.org/10.1016/j.ces.2015.09.035
  9. Wu, Y., Liu, D., Ma, J., Chen, X. (2017). Three-Dimensional Eulerian–Eulerian Simulation of Coal Combustion under Air Atmosphere in a Circulating Fluidized Bed Combustor. Energy & Fuels, 31 (8), 7952–7966. doi: https://doi.org/10.1021/acs.energyfuels.7b01084
  10. Sharma, V., Agarwal, V. K. (2019). Numerical simulation of coal gasification in a circulating fluidized bed gasifier. Brazilian Journal of Chemical Engineering, 36 (3), 1289–1301. doi: https://doi.org/10.1590/0104-6632.20190363s20180423
  11. Peng, L., Wu, Y., Wang, C., Gao, J., Lan, X. (2016). 2.5D CFD simulations of gas–solids flow in cylindrical CFB risers. Powder Technology, 291, 229–243. doi: https://doi.org/10.1016/j.powtec.2015.12.018
  12. Chui, E. H., Majeski, A. J., Lu, D. Y., Hughes, R., Gao, H., McCalden, D. J., Anthony, E. J. (2009). Simulation of entrained flow coal gasification. Energy Procedia, 1 (1), 503–509. doi: https://doi.org/10.1016/j.egypro.2009.01.067
  13. Panov, E. N., Karvatskii, A. Y., Shilovich, T. B., Lazarev, T. B., Moroz, A. S. (2014). Mathematical Model of Solid-Fuel Gasification in a Fluidized Bed. Chemical and Petroleum Engineering, 50 (5-6), 312–322. doi: https://doi.org/10.1007/s10556-014-9900-3
  14. Anetor, L., Osakue, E., Odetunde, C. (2012). Reduced Mechanism Approach of Modeling Premixed Propane-Air Mixture Using ANSYS Fluent. Engineering Journal, 16 (1), 67–86. doi: https://doi.org/10.4186/ej.2012.16.1.67
  15. Gri mech 3.0 chemkin. Available at: http://combustion.berkeley.edu/gri-mech/version30/files30/grimech30.dat
  16. Cantera is an open-source suite of tools for problems involving chemical kinetics, thermodynamics, and transport processes. Available at: https://cantera.org/
  17. Slavinskaya, N., Braun-Unkhoff, M., Frank, P. (2008). Reduced Reaction Mechanisms for Methane and Syngas Combustion in Gas Turbines. Journal of Engineering for Gas Turbines and Power, 130 (2). doi: https://doi.org/10.1115/1.2719258
  18. ANSYS. Available at: https://www.ansys.com/
  19. MFIX. Available at: https://mfix.netl.doe.gov/
  20. McBride, B. J., Gordon, S. (1996). Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications II. Users Manual and Program Description. NASA RP 1311. National Aeronautics and Space Administration.
  21. Chalyh, E. F. (1972). Tehnologiya i oborudovanie elektrodnyh i elektrougol'nyh predpriyatiy. Moscow: Metallurgiya, 432.
  22. Westbrook, C. K., Dryer, F. L. (1981). Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames. Combustion Science and Technology, 27 (1-2), 31–43. doi: https://doi.org/10.1080/00102208108946970
  23. Tahir, F., Ali, H., Baloch, A. A. B., Jamil, Y. (2019). Performance Analysis of Air and Oxy-Fuel Laminar Combustion in a Porous Plate Reactor. Energies, 12 (9), 1706. doi: https://doi.org/10.3390/en12091706
  24. ParaView. An open-source, multi-platform data analysis and visualization application. Available at: http://www.paraview.org/

Downloads

Published

2020-08-31

How to Cite

Karvatskii, A., Lazariev, T., Leleka, S., Mikulionok, I., & Ivanenko, O. (2020). Determination of parameters of the carbon­containing materials gasification process in the rotary kiln cooler drum. Eastern-European Journal of Enterprise Technologies, 4(8 (106), 65–76. https://doi.org/10.15587/1729-4061.2020.210767

Issue

Section

Energy-saving technologies and equipment