Determining the content of macronutrients in berry sauces using a method of IR-spectroscopy

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.213365

Keywords:

wild and cultivated berries, algae raw materials, iodine-containing additives, berry sauces, IR spectroscopy

Abstract

This paper has substantiated the possibility of using an IR spectroscopy method to study patterns in the chemical composition of wild and cultivated raw materials with the addition of algae as iodine-containing supplements.

It has been found that the IR spectra of sauces based on the mashed blueberry and sea buckthorn or cranberry with or without algae demonstrate a set of absorption bands attributed to the respective types of oscillations. The valence fluctuations in the hydroxyl groups in the molecules of organic acids, carbohydrates, flavonoids are observed at 3,365 cm -1 to 3,400 cm -1 ν(ОН). The bands of valence and deformation fluctuations of the ‒CH double bond of polyunsaturated fatty acids manifest themselves in the range of 3,005 cm-1 and722 cm-1. The bands of 2,925 cm-1, 2,855 cm-1 belong to the asymmetric and symmetric valence oscillations of the n(С–Н) carbon skeleton in -CH2-. The presence of the carboxylic, amino-, and fatty acids is indicated by the following absorption bands: 1,746 cm-1 ‒ ν (C=O) valence fluctuations in the protonated carboxyl group ‒COOH; 1,545 cm–1 ‒ νas(C=O; 1,415 cm–1 ‒ νs(C=O) ‒ the asymmetric and symmetric valence fluctuations of the СОО-groups; and 1,240 cm–1 ‒ the valence fluctuations of ν(C‒O). The presence of flavonoids is confirmed by the presence of bands at 1,380 cm-1 and 1,050 cm-1 ‒ the deformation δ(O‒H) and symmetrical fluctuations of O‒H groups. The fluctuations of pyranose cycles of pectins are manifested in the range of 1,163 cm– 1.

It is noted that the composition of berry raw materials and sauces include polyunsaturated fatty acids, anthocyanins, flavonoids, organic acids, and pectin substances.

An analysis of the IR spectra of berry sauce samples with the addition of algae has shown that the use of these additives in sauce technologies ensures a significant increase in the content of the physiological and functional ingredients and improves the hydrophobic properties of the raw materials

Author Biographies

Gregoriy Deynichenko, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

Doctor of Technical Sciences, Professor, Head of Department

Department of Food and Hotel Industry Equipment named after M. I. Belyaev

Tamara Lystopad, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

Postgraduate Student

Department of Food and Hotel Industry Equipment named after M. I. Belyaev

Anna Novik, Oles Honchar Dnipro National University Haharina str., 72, Dnipro, Ukraine, 49010

PhD, Associate Professor

Department of Food Technology

Line Chernushenko, Oles Honchar Dnipro National University Haharina str., 72, Dnipro, Ukraine, 49010

PhD, Associate Professor

Department of Food Technology

Andrii Farisieiev, Oles Honchar Dnipro National University Haharina str., 72, Dnipro, Ukraine, 49010

PhD, Associate Professor

Department of Food Technology

Yuliiа Matsuk, Oles Honchar Dnipro National University Haharina str., 72, Dnipro, Ukraine, 49010

PhD, Associate Professor

Department of Food Technology

Tatiana Kolisnychenko, University of Customs and Finance Volodymyra Vernadskoho str., 2/4, Dnipro, Ukraine, 49000

PhD, Associate Professor

Department of International Economic Relations, Regional Studies and Tourism

References

  1. Savenko, H. Ye. (2017). The development of the market of production of berries of Ukraine in conditions of the integration into the European Union. Naukovyi visnyk Mizhnarodnoho humanitarnoho universytetu. Seriya: ekonomika i menedzhment, 23 (1), 132–135.
  2. Kondratenko, P. V., Shevchuk, L. M., Barabash, L. O. (2014). Small fruit growing in Ukraine – state and development promises. Sadivnytstvo, 68, 103–110.
  3. Sheremet, O. O., Krivchun, O. M. (2011). Organizational and economic mechanism resource saving the food industry. Naukovi pratsi NUKhT, 40, 34–39.
  4. Roohinejad, S., Koubaa, M., Barba, F. J., Saljoughian, S., Amid, M., Greiner, R. (2017). Application of seaweeds to develop new food products with enhanced shelf-life, quality and health-related beneficial properties. Food Research International, 99, 1066–1083. doi: https://doi.org/10.1016/j.foodres.2016.08.016
  5. Del Olmo, A., Picon, A., Nuñez, M. (2018). Cheese supplementation with five species of edible seaweeds: Effect on microbiota, antioxidant activity, colour, texture and sensory characteristics. International Dairy Journal, 84, 36–45. doi: https://doi.org/10.1016/j.idairyj.2018.04.004
  6. Korzun, V. N., Sahlo, V. I., Parats, A. M. (2004). Kharchovi produkty z vodorostiamy yak zasib minimizatsiyi diyi radiatsiyi ta endemiyi. Problemy kharchuvannia, 1 (2), 29–34.
  7. Peresichnyi, M. I., Kandalei, O. V. (2005). Yakist miasnykh kulinarnykh vyrobiv iz fukusamy funktsionalnoho pryznachennia. Obladnannia ta tekhnolohiyi kharchovykh vyrobnytstv, 1 (13), 258–263.
  8. Moroney, N. C., O’Grady, M. N., O’Doherty, J. V., Kerry, J. P. (2013). Effect of a brown seaweed (Laminaria digitata) extract containing laminarin and fucoidan on the quality and shelf-life of fresh and cooked minced pork patties. Meat Science, 94 (3), 304–311. doi: https://doi.org/10.1016/j.meatsci.2013.02.010
  9. Gallaher, J. J., Hollender, R., Peterson, D. G., Roberts, R. F., Coupland, J. N. (2005). Effect of composition and antioxidants on the oxidative stability of fluid milk supplemented with an algae oil emulsion. International Dairy Journal, 15 (4), 333–341. doi: https://doi.org/10.1016/j.idairyj.2004.08.010
  10. Ivanova, T. N., Zhuchkov, A. A. (2003). Optimizatsiya retseptur i otsenka kachestva plodoovoshchnyh sousov. Hranenie i pererabotka sel'hozsyr'ya, 5, 58–61.
  11. Zhukevych, O. M. (2012). Smetanno-roslynni sousy dlia profilaktyky yododefitsytnykh zakhvoriuvan. Produkty & Ingridienty, 5 (91), 40–41.
  12. Uchida, M., Kurushima, H., Ishihara, K., Murata, Y., Touhata, K., Ishida, N. et. al. (2017). Characterization of fermented seaweed sauce prepared from nori (Pyropia yezoensis). Journal of Bioscience and Bioengineering, 123 (3), 327–332. doi: https://doi.org/10.1016/j.jbiosc.2016.10.003
  13. Gupta, S., Abu-Ghannam, N. (2011). Recent developments in the application of seaweeds or seaweed extracts as a means for enhancing the safety and quality attributes of foods. Innovative Food Science & Emerging Technologies, 12 (4), 600–609. doi: https://doi.org/10.1016/j.ifset.2011.07.004
  14. Andersson, M., de Benoist, B., Darnton-Hill, I., Delange, F. (Eds.) (2007). Iodine deficiency in Europe: а continuing public health problem. World Health Organization, 86. Available at: https://apps.who.int/iris/bitstream/handle/10665/43398/9789241593960_eng.pdf?sequence=1&isAllowed=y
  15. Adams, J. M. M., Ross, A. B., Anastasakis, K., Hodgson, E. M., Gallagher, J. A., Jones, J. M., Donnison, I. S. (2011). Seasonal variation in the chemical composition of the bioenergy feedstock Laminaria digitata for thermochemical conversion. Bioresource Technology, 102 (1), 226–234. doi: https://doi.org/10.1016/j.biortech.2010.06.152
  16. Zhang, H., Pang, Z., Han, C. (2014). Undaria pinnatifida (Wakame): A Seaweed with Pharmacological Properties. Science International, 2 (2), 32–36. doi: https://doi.org/10.17311/sciintl.2014.32.36
  17. Rodriguez-Jasso, R., Mussatto, S., Pastrana, L., Aguilar, C., Teixeira, J. (2014). Chemical composition and antioxidant activity of sulphated polysaccharides extracted from Fucus vesiculosus using different hydrothermal processes. Chemical Papers, 68 (2). doi: https://doi.org/10.2478/s11696-013-0430-9
  18. Mišurcová, L. (2011). Chemical Composition of Seaweeds. Handbook of Marine Macroalgae, 171–192. doi: https://doi.org/10.1002/9781119977087.ch7
  19. Yin, S., Shibata, M., Hagiwara, T. (2019). Extraction of Bioactive Compounds from Stems of Undaria pinnatifida. Food Science and Technology Research, 25 (6), 765–773. doi: https://doi.org/10.3136/fstr.25.765
  20. Paiva, L., Lima, E., Neto, A., Baptista, J. (2018). Seasonal Variability of the Biochemical Composition and Antioxidant Properties of Fucus spiralis at Two Azorean Islands. Marine Drugs, 16 (8), 248. doi: https://doi.org/10.3390/md16080248
  21. Annamukhammedova, O. O., Annamukhammedov, A. O. (2016). Likarski roslyny v tablytsiakh ta skhemakh. Zhytomyr, 187.
  22. Côté, J., Caillet, S., Doyon, G., Sylvain, J.-F., Lacroix, M. (2010). Bioactive Compounds in Cranberries and their Biological Properties. Critical Reviews in Food Science and Nutrition, 50 (7), 666–679. doi: https://doi.org/10.1080/10408390903044107
  23. Patel, S. (2014). Blueberry as functional food and dietary supplement: The natural way to ensure holistic health. Mediterranean Journal of Nutrition and Metabolism, 7 (2), 133–143. doi: https://doi.org/10.3233/mnm-140013
  24. Bal, L. M., Meda, V., Naik, S. N., Satya, S. (2011). Sea buckthorn berries: A potential source of valuable nutrients for nutraceuticals and cosmoceuticals. Food Research International, 44 (7), 1718–1727. doi: https://doi.org/10.1016/j.foodres.2011.03.002
  25. Deinychenko, G., Kolisnychenko, T., Lystopad, T. (2018). Development of technology of berry sauces with iodine-containing additives taking into account their influence on organoleptic parameters. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies, 20 (85), 107–113. doi: https://doi.org/10.15421/nvlvet8520
  26. Deinychenko, G., Lystopad, Т., Kolisnychenko, T. (2019). Research of the safety indicators of berry sauces with seaweed’s raw materials. Food science and technology, 13 (2), 103–110. doi: https://doi.org/10.15673/fst.v13i2.1405
  27. Baker, M. J., Trevisan, J., Bassan, P., Bhargava, R., Butler, H. J., Dorling, K. M. et. al. (2014). Using Fourier transform IR spectroscopy to analyze biological materials. Nature Protocols, 9 (8), 1771–1791. doi: https://doi.org/10.1038/nprot.2014.110
  28. Zimmermann, B., Kohler, A. (2014). Infrared Spectroscopy of Pollen Identifies Plant Species and Genus as Well as Environmental Conditions. PLoS ONE, 9 (4), e95417. doi: https://doi.org/10.1371/journal.pone.0095417
  29. Nawrocka, A., Lamorsk, J. (2013). Determination of Food Quality by Using Spectroscopic Methods. Advances in Agrophysical Research. doi: https://doi.org/10.5772/52722
  30. Sun, D.-W. (2009). Infrared spectroscopy for food quality analysis and control. Academic Press, 448. doi: https://doi.org/10.1016/b978-0-12-374136-3.x0001-6
  31. Heneczkowski, M., Kopacz, M., Nowak, D., Kuźniar, A. (2001). Infrared spectrum analysis of some flavonoids. Acta poloniae pharmaceutica, 58 (6), 415–420. Available at: https://pubmed.ncbi.nlm.nih.gov/12197612/
  32. Fausto, R., Quinteiro, G., Breda, S. (2001). Vibrational spectroscopy and ab initio MO study of the molecular structure and vibrational spectra of α- and γ-pyrones. Journal of Molecular Structure, 598 (2-3), 287–303. doi: https://doi.org/10.1016/s0022-2860(01)00639-1
  33. Wulandari, L., Retnaningtyas, Y., Nuri, Lukman, H. (2016). Analysis of Flavonoid in Medicinal Plant Extract Using Infrared Spectroscopy and Chemometrics. Journal of Analytical Methods in Chemistry, 2016, 1–6. doi: https://doi.org/10.1155/2016/4696803
  34. Sokolan, N. I., Kuranova, L. K., Voron, N. G., Grokhovskii, V. A. (2018). Investigation of the possibility of producing sodium alginate from the product of processing fucus algae. Proceedings of the Voronezh State University of Engineering Technologies, 80 (1), 161–167. doi: https://doi.org/10.20914/2310-1202-2018-1-161-167
  35. Nigam, S., Barick, K. C., Bahadur, D. (2011). Development of citrate-stabilized Fe3O4 nanoparticles: Conjugation and release of doxorubicin for therapeutic applications. Journal of Magnetism and Magnetic Materials, 323 (2), 237–243. doi: https://doi.org/10.1016/j.jmmm.2010.09.009
  36. Dróżdż, P., Šėžienė, V., Pyrzynska, K. (2017). Phytochemical Properties and Antioxidant Activities of Extracts from Wild Blueberries and Lingonberries. Plant Foods for Human Nutrition, 72 (4), 360–364. doi: https://doi.org/10.1007/s11130-017-0640-3
  37. Dulf, F. V. (2012). Fatty acids in berry lipids of six sea buckthorn (Hippophae rhamnoides L., subspecies carpatica) cultivars grown in Romania. Chemistry Central Journal, 6 (1). doi: https://doi.org/10.1186/1752-153x-6-106
  38. Lystopad, T., Deinychenko, G. (2020). Micronutrient content in berry sauces with seaweed raw material. Actual problems and modern technologies of food products production. Collection of works. International scientific and practical conference. Kutaisi, 275–283.

Downloads

Published

2020-10-31

How to Cite

Deynichenko, G., Lystopad, T., Novik, A., Chernushenko, L., Farisieiev, A., Matsuk, Y., & Kolisnychenko, T. (2020). Determining the content of macronutrients in berry sauces using a method of IR-spectroscopy. Eastern-European Journal of Enterprise Technologies, 5(11 (107), 32–42. https://doi.org/10.15587/1729-4061.2020.213365

Issue

Section

Technology and Equipment of Food Production