Development of energy harvesting with water droplet continuous flow over nanohollow and nanostalagmite of taro leaf surface

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.214263

Keywords:

Water Droplet, Nanohollow, Nanostalagmite, Superhydrophobic Surface, Taro Leaf, Electrical Energy

Abstract

Electrical energy is generated by harvesting the induced charge in metal electrodes and by connecting the surface of the taro leaf, coated with the electrodes underneath, to the bridge rectifier and capacitor. This discussion was supported by a Scanning Electron Microscope analysis on the surface of taro leaves.The electrical energy was measured using a bridge rectifier atvarious water droplet rate in contact with leaf,and at various slope of the taro leaves. The results showed that the slope of the leaf surface contact area with water droplets and taro leaf increases the generation of electric voltage. The greater the tilt angle of the taro leaf surface causing more electrons to jump out of orbit. The surface of taro leaves made by a cluster of nanostalagmites with other nanostalagmites separated by nanoscalehollows that tend to repel water droplets. The results from the repulsion of nanostalagmites at a very small radius of the nanostalagmite structure were very high surface tension or surface energy. The electron jump is mainly generated due to the high surface tension energy of the nanostalagmite structure that when it comes into contact with ionized H+ and OH- in the water droplet,it produces hydrogen (H2). H2 is trapped in the nanohollows between the nanostalagmites. Due to the dense morphology of nanostalagmite, H2 will tend to be pushed upwards to force the water droplet. As a result, the surface tension will be higher and the surface will be more superhydropobic thereby increasing the electrical voltage. The morphology and the tilt angle have an important role in generating electrical energy. Thus, it is necessary to do further research on superhidrophobic characteristics as a solution in the future to overcome the problem of electrical energy

Supporting Agencies

  • The Directorate of Research and Community Service
  • Directorate General of Research and Development Strengthening
  • Ministry of Education and Culture of the Republic of Indonesia
  • Brawijaya University
  • Samawa University

Author Biographies

Komang Metty Trisna Negara, Brawijaya University Jl. Mayjend Haryono, 167, Malang, Indonesia, 65145 Samawa University Great Sumbawa, West Nusa Tenggara, Indonesia

Doctoral Student in Mechanical Engineering

Department of Mechanical Engineering

Study Program in Mechanical Engineering

Department of Mechanical Engineering

Nurkholis Hamidi, Brawijaya University Jalan Mayjend. Haryono 167 Malang, Jawa Timur, Indonesia, 65145

Doctorate in Mechanical Engineering

Department of Mechanical Engineering

Denny Widhiyanuriyawan, Brawijaya University Jalan Mayjend. Haryono 167 Malang, Jawa Timur, Indonesia, 65145

Doctorate in Mechanical Engineering

Department of Mechanical Engineering

I Nyoman Gede Wardana, Brawijaya University Jalan Mayjend. Haryono 167 Malang 65145, Jawa Timur, Indonesia

Professor in Mechanical Engineering

Department of Mechanical Engineering

References

  1. Webb, H. K., Crawford, R. J., Ivanova, E. P. (2014). Wettability of natural superhydrophobic surfaces. Advances in Colloid and Interface Science, 210, 58–64. doi: https://doi.org/10.1016/j.cis.2014.01.020
  2. Negara, K. M. T., Wardana, I. N. G., Widhiyanuriyawan, D., Hamidi, N. (2019). The Role of the Slope on Taro Leaf Surface to Produce Electrical Energy. IOP Conference Series: Materials Science and Engineering, 494, 012084. doi: https://doi.org/10.1088/1757-899x/494/1/012084
  3. Lee, Y. R., Shin, J. H., Park, I. S., Rhee, K., Chung, S. K. (2015). Energy harvesting based on acoustically oscillating liquid droplets. Sensors and Actuators A: Physical, 231, 8–14. doi: https://doi.org/10.1016/j.sna.2015.03.009
  4. Lin, Z.-H., Cheng, G., Lee, S., Pradel, K. C., Wang, Z. L. (2014). Harvesting Water Drop Energy by a Sequential Contact-Electrification and Electrostatic-Induction Process. Advanced Materials, 26 (27), 4690–4696. doi: https://doi.org/10.1002/adma.201400373
  5. Baytekin, B., Baytekin, H. T., Grzybowski, B. A. (2012). What Really Drives Chemical Reactions on Contact Charged Surfaces? Journal of the American Chemical Society, 134 (17), 7223–7226. doi: https://doi.org/10.1021/ja300925h
  6. Wu, W., Wang, X., Liu, X., Zhou, F. (2009). Spray-Coated Fluorine-Free Superhydrophobic Coatings with Easy Repairability and Applicability. ACS Applied Materials & Interfaces, 1 (8), 1656–1661. doi: https://doi.org/10.1021/am900136k
  7. Luo, Z. Z., Zhang, Z. Z., Hu, L. T., Liu, W. M., Guo, Z. G., Zhang, H. J., Wang, W. J. (2008). Stable Bionic Superhydrophobic Coating Surface Fabricated by a Conventional Curing Process. Advanced Materials, 20 (5), 970–974. doi: https://doi.org/10.1002/adma.200701229
  8. Ma, X., Zhao, D., Xue, M., Wang, H., Cao, T. (2010). Selective Discharge of Electrostatic Charges on Electrets Using a Patterned Hydrogel Stamp. Angewandte Chemie, 122 (32), 5669–5672. doi: https://doi.org/10.1002/ange.201000766
  9. Zhao, D., Duan, L., Xue, M., Ni, W., Cao, T. (2009). Patterning of Electrostatic Charge on Electrets Using Hot Microcontact Printing. Angewandte Chemie International Edition, 48 (36), 6699–6703. doi: https://doi.org/10.1002/anie.200902627
  10. Lin, Z.-H., Zhu, G., Zhou, Y. S., Yang, Y., Bai, P., Chen, J., Wang, Z. L. (2013). A Self-Powered Triboelectric Nanosensor for Mercury Ion Detection. Angewandte Chemie International Edition, 52 (19), 5065–5069. doi: https://doi.org/10.1002/anie.201300437
  11. Fan, F.-R., Tian, Z.-Q., Lin Wang, Z. (2012). Flexible triboelectric generator. Nano Energy, 1 (2), 328–334. doi: https://doi.org/10.1016/j.nanoen.2012.01.004
  12. Cheng, G., Lin, Z.-H., Lin, L., Du, Z., Wang, Z. L. (2013). Pulsed Nanogenerator with Huge Instantaneous Output Power Density. ACS Nano, 7 (8), 7383–7391. doi: https://doi.org/10.1021/nn403151t
  13. Zhu, G., Lin, Z.-H., Jing, Q., Bai, P., Pan, C., Yang, Y. et. al. (2013). Toward Large-Scale Energy Harvesting by a Nanoparticle-Enhanced Triboelectric Nanogenerator. Nano Letters, 13 (2), 847–853. doi: https://doi.org/10.1021/nl4001053
  14. Nguyen, V., Yang, R. (2013). Effect of humidity and pressure on the triboelectric nanogenerator. Nano Energy, 2 (5), 604–608. doi: https://doi.org/10.1016/j.nanoen.2013.07.012
  15. Zhang, X.-S., Han, M.-D., Wang, R.-X., Zhu, F.-Y., Li, Z.-H., Wang, W., Zhang, H.-X. (2013). Frequency-Multiplication High-Output Triboelectric Nanogenerator for Sustainably Powering Biomedical Microsystems. Nano Letters, 13 (3), 1168–1172. doi: https://doi.org/10.1021/nl3045684
  16. Roundy, S., Wright, P. K. (2004). A piezoelectric vibration based generator for wireless electronics. Smart Materials and Structures, 13 (5), 1131–1142. doi: https://doi.org/10.1088/0964-1726/13/5/018
  17. Guigon, R., Chaillout, J.-J., Jager, T., Despesse, G. (2008). Harvesting raindrop energy: experimental study. Smart Materials and Structures, 17 (1), 015039. doi: https://doi.org/10.1088/0964-1726/17/01/015039
  18. Al Ahmad, M., Jabbour, G. E. (2012). Electronically droplet energy harvesting using piezoelectric cantilevers. Electronics Letters, 48 (11), 647. doi: https://doi.org/10.1049/el.2012.0616
  19. Feng, L., Liu, Y., Zhang, H., Wang, Y., Qiang, X. (2012). Superhydrophobic alumina surface with high adhesive force and long-term stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 410, 66–71. doi: https://doi.org/10.1016/j.colsurfa.2012.06.018
  20. Zhang, X., Guo, Y., Zhang, P., Wu, Z., Zhang, Z. (2012). Superhydrophobic and Superoleophilic Nanoparticle Film: Synthesis and Reversible Wettability Switching Behavior. ACS Applied Materials & Interfaces, 4 (3), 1742–1746. doi: https://doi.org/10.1021/am201856j
  21. Yuan, Y., Lee, T. R. (2013). Contact Angle and Wetting Properties. Springer Series in Surface Sciences, 3–34. doi: https://doi.org/10.1007/978-3-642-34243-1_1
  22. Muzenski, S., Flores-Vivian, I., Sobolev, K. (2015). Hydrophobic engineered cementitious composites for highway applications. Cement and Concrete Composites, 57, 68–74. doi: https://doi.org/10.1016/j.cemconcomp.2014.12.009
  23. Feng, L., Zhang, H., Mao, P., Wang, Y., Ge, Y. (2011). Superhydrophobic alumina surface based on stearic acid modification. Applied Surface Science, 257 (9), 3959–3963. doi: https://doi.org/10.1016/j.apsusc.2010.11.143
  24. Seo, H. O., Kim, K.-D., Jeong, M.-G., Kim, Y. D., Choi, K. H., Hong, E. M. et. al. (2011). Superhydrophobic carbon fiber surfaces prepared by growth of carbon nanostructures and polydimethylsiloxane coating. Macromolecular Research, 20 (2), 216–219. doi: https://doi.org/10.1007/s13233-012-0029-y
  25. Subagyo, R., Wardana, I. N. G., Widodo, A., Siswanto, E. (2017). The Mechanism of Hydrogen Bubble Formation Caused by the Super Hydrophobic Characteristic of Taro Leaves. International Review of Mechanical Engineering (IREME), 11 (2), 95. doi: https://doi.org/10.15866/ireme.v11i2.10621
  26. Negara, K. M. T., Widhiyanuriyawan, D., Hamidi, N., Wardana, I. N. G. (2020). The Dynamic Interaction of Water Droplet with Nano-Stalagmite Functional Groups of Taro Leaf Surface. Journal of Southwest Jiaotong University, 55 (2). doi: https://doi.org/10.35741/issn.0258-2724.55.2.28
  27. Kriz, G. S., Pavia, D. L., Lampman, G. M. (2001). Introduction to Spectroscopy. Washington.
  28. Cassie, A. B. D., Baxter, S. (1944). Wettability of porous surfaces. Transactions of the Faraday Society, 40, 546. doi: https://doi.org/10.1039/tf9444000546

Downloads

Published

2020-10-31

How to Cite

Trisna Negara, K. M., Hamidi, N., Widhiyanuriyawan, D., & Wardana, I. N. G. (2020). Development of energy harvesting with water droplet continuous flow over nanohollow and nanostalagmite of taro leaf surface. Eastern-European Journal of Enterprise Technologies, 5(5 (107), 14–22. https://doi.org/10.15587/1729-4061.2020.214263

Issue

Section

Applied physics