A research of colloidal silver immobilization in bionanocomposites of natural polymers and montmorillonite

Authors

  • Kuanyshbek Musabekov Al-Farabi Kazakh National University Al-Farabi ave., 71, Almaty, Republic of Kazakhstan, 050040, Kazakhstan https://orcid.org/0000-0003-1114-1901
  • Botagoz Zhakyp Al-Farabi Kazakh National University Al-Farabi ave., 71, Almaty, Republic of Kazakhstan, 050040, Kazakhstan https://orcid.org/0000-0002-7540-0872
  • Sagdat Tazhibayeva Al-Farabi Kazakh National University Al-Farabi ave., 71, Almaty, Republic of Kazakhstan, 050040, Kazakhstan https://orcid.org/0000-0003-3300-3235
  • Nurlan Musabekov Al-Farabi Kazakh National University Al-Farabi ave., 71, Almaty, Republic of Kazakhstan, 050040, Kazakhstan
  • Ayagoz Yergaliyeva Al-Farabi Kazakh National University Al-Farabi ave., 71, Almaty, Republic of Kazakhstan, 050040, Kazakhstan https://orcid.org/0000-0002-9570-6457

DOI:

https://doi.org/10.15587/1729-4061.2020.216995

Keywords:

colloidal silver, bionanocomposites, montmorillonite interlayer space, alginate, carboxymethylcellulose, tensile strength

Abstract

Currently, colloidal silver particles are used in the creation of electronic, optical, and sensor devices of a new generation. Silver-containing bionanocomposites (BNCs) were synthesized by immobilization of colloidal montmorillonite particles containing colloidal silver in a composition of sodium alginate and sodium salt of carboxymethylcellulose. Silver-containing montmorillonite particles Ag-Mt were obtained by replacing Na+ ions in layered silicate galleries with Ag+ ions, followed by the transformation of silver ions into silver particles. The introduction of Ag+ ions into the montmorillonite structure is justified by infrared spectroscopy. When studying the strength of bionanocomposite films, it was found that with an increase in the content of Ag-Mt particles in their composition, the strength increases and the deformation decreases.

It is found that the equilibrium values of the swelling constant are set in ~30 minutes. At the same time, with an increase in the Ag-Mt content in the bionanocomposite from 3 % to 10 %, the value of the equilibrium swelling coefficient (Kswell) decreases by 2.8 times. The replacement of Na+ ions with Ag+ ions in the montmorillonite structure is accompanied by a decrease in the swelling of bionanocomposites, which is explained by the lower hydration of Ag+ ions compared to Na+ ions. As another reason for the decrease in the swelling of bimonanocomposites with an increase in the proportion of Ag-Mt in their composition, enhancing their ability to structure formation in the prersence of a clay mineral is indicated.

The kinetics of the release of Ag+ ions from bionanocomposites into saline has been studied. It is shown that the release of Ag+ ions increases with increasing pH of the medium

Author Biographies

Kuanyshbek Musabekov, Al-Farabi Kazakh National University Al-Farabi ave., 71, Almaty, Republic of Kazakhstan, 050040

Doctor of chemical Sciences, Professor

Department of Analytical, Colloid Chemistry and Technology of Rare Elements

National Nanotechnology Laboratory of Open Type

Botagoz Zhakyp, Al-Farabi Kazakh National University Al-Farabi ave., 71, Almaty, Republic of Kazakhstan, 050040

Postgraduate Student

Department of Analytical, Colloid Chemistry and Technology of Rare Elements

Sagdat Tazhibayeva, Al-Farabi Kazakh National University Al-Farabi ave., 71, Almaty, Republic of Kazakhstan, 050040

Doctor of Chemical Sciences, Professor

Department of Analytical, Colloid Chemistry and Technology of Rare Elements

Nurlan Musabekov, Al-Farabi Kazakh National University Al-Farabi ave., 71, Almaty, Republic of Kazakhstan, 050040

PhD, Leading Researcher

National Nanotechnology Laboratory of Open Type

Ayagoz Yergaliyeva, Al-Farabi Kazakh National University Al-Farabi ave., 71, Almaty, Republic of Kazakhstan, 050040

Master

Department of Analytical, Colloid Chemistry and Technology of Rare Elements

References

  1. Krutyakov, Y. A., Kudrinskiy, A. A., Olenin, A. Y., Lisichkin, G. V. (2008). Synthesis and properties of silver nanoparticles: advances and prospects. Russian Chemical Reviews, 77 (3), 233–257. doi: https://doi.org/10.1070/rc2008v077n03abeh003751
  2. Wright, G. (2005). Bacterial resistance to antibiotics: Enzymatic degradation and modification. Advanced Drug Delivery Reviews, 57 (10), 1451–1470. doi: https://doi.org/10.1016/j.addr.2005.04.002
  3. Shen, L., Wang, B., Wang, J., Fu, J., Picart, C., Ji, J. (2012). Asymmetric Free-Standing Film with Multifunctional Anti-Bacterial and Self-Cleaning Properties. ACS Applied Materials & Interfaces, 4 (9), 4476–4483. doi: https://doi.org/10.1021/am301118f
  4. Simončič, B., Klemenčič, D. (2015). Preparation and performance of silver as an antimicrobial agent for textiles: A review. Textile Research Journal, 86 (2), 210–223. doi: https://doi.org/10.1177/0040517515586157
  5. De Azeredo, H. M. C. (2013). Antimicrobial nanostructures in food packaging. Trends in Food Science & Technology, 30 (1), 56–69. doi: https://doi.org/10.1016/j.tifs.2012.11.006
  6. Shameli, K., Mansor Bin Ahmad, M., Mohsen, Z., Yunis, W. Z., Ibrahim, N. A., Rustaiyan, A. (2011). Synthesis of silver nanoparticles in montmorillonite and their antibacterial behavior. International Journal of Nanomedicine, 6, 581–590. doi: https://doi.org/10.2147/ijn.s17112
  7. An, J., Luo, Q., Yuan, X., Wang, D., Li, X. (2011). Preparation and characterization of silver-chitosan nanocomposite particles with antimicrobial activity. Journal of Applied Polymer Science, 120 (6), 3180–3189. doi: https://doi.org/10.1002/app.33532
  8. Pinto, R. J. B., Fernandes, S. C. M., Freire, C. S. R., Sadocco, P., Causio, J., Neto, C. P., Trindade, T. (2012). Antibacterial activity of optically transparent nanocomposite films based on chitosan or its derivatives and silver nanoparticles. Carbohydrate Research, 348, 77–83. doi: https://doi.org/10.1016/j.carres.2011.11.009
  9. Wang, B.-L., Liu, X.-S., Ji, Y., Ren, K.-F., Ji, J. (2012). Fast and long-acting antibacterial properties of chitosan-Ag/polyvinylpyrrolidone nanocomposite films. Carbohydrate Polymers, 90 (1), 8–15. doi: https://doi.org/10.1016/j.carbpol.2012.03.080
  10. Sotiriou, G. A., Meyer, A., Knijnenburg, J. T. N., Panke, S., Pratsinis, S. E. (2012). Quantifying the Origin of Released Ag+ Ions from Nanosilver. Langmuir, 28 (45), 15929–15936. doi: https://doi.org/10.1021/la303370d
  11. Burkova, Y. L., Beleneva, I. A., Shchipunov, Y. A. (2015). Bactericidal sodium alginate films containing nanosized silver particles. Colloid Journal, 77 (6), 707–714. doi: https://doi.org/10.1134/s1061933x15060058
  12. Lavorgna, M., Attianese, I., Buonocore, G. G., Conte, A., Del Nobile, M. A., Tescione, F., Amendola, E. (2014). MMT-supported Ag nanoparticles for chitosan nanocomposites: Structural properties and antibacterial activity. Carbohydrate Polymers, 102, 385–392. doi: https://doi.org/10.1016/j.carbpol.2013.11.026
  13. Tazhibayeva, S., Tyussyupova, B., Yermagambetova, A., Kokanbayev, A., Musabekov, K. (2020). Preparation and regulation of structural-mechanical properties of biodegradable films based on starch and agar. Eastern-European Journal of Enterprise Technologies, 5 (6 (107)), 40–48. doi: https://doi.org/10.15587/1729-4061.2020.213226
  14. Tyutrina, S. V., Kuznetsova, N. S., Burnashova, N. N. (2012). Spectral characteristics of the silicates of Zabaykalsky Krai and their composites when exposed to ultrasonic vibrations. Fundamental research, 9 (2), 460–464.
  15. Plotnikova, L. V., Uspenskaya, M. V. Ignat'eva, Yu. A. (2016). Modifikatsiya obogashchennogo bentonita ionami serebra. Sbornik nauchnyh trudov po itogam mezhdunarodnoy nauchno-prakticheskoy konferentsii. Tyumen', 48–51.
  16. Incoronato, A. L., Buonocore, G. G., Conte, A., Lavorgna, M., Del Nobile, M. A. (2010). Active Systems Based on Silver-Montmorillonite Nanoparticles Embedded into Bio-Based Polymer Matrices for Packaging Applications. Journal of Food Protection, 73 (12), 2256–2262. doi: https://doi.org/10.4315/0362-028x-73.12.2256
  17. Mishra, R. K., Ramasamy, K., Lim, S. M., Ismail, M. F., Majeed, A. B. A. (2014). Antimicrobial and in vitro wound healing properties of novel clay based bionanocomposite films. Journal of Materials Science: Materials in Medicine, 25 (8), 1925–1939. doi: https://doi.org/10.1007/s10856-014-5228-y
  18. Kumar, P., Sandeep, K. P., Alavi, S., Truong, V. D., Gorga, R. E. (2010). Preparation and characterization of bio-nanocomposite films based on soy protein isolate and montmorillonite using melt extrusion. Journal of Food Engineering, 100 (3), 480–489. doi: https://doi.org/10.1016/j.jfoodeng.2010.04.035

Downloads

Published

2020-12-31

How to Cite

Musabekov, K., Zhakyp, B., Tazhibayeva, S., Musabekov, N., & Yergaliyeva, A. (2020). A research of colloidal silver immobilization in bionanocomposites of natural polymers and montmorillonite. Eastern-European Journal of Enterprise Technologies, 6(6 (108), 93–101. https://doi.org/10.15587/1729-4061.2020.216995

Issue

Section

Technology organic and inorganic substances