Determination of the applicability of the tungsten-containing material as low-cost electrodes for reverse electrodialysis

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.239015

Keywords:

reverse electrodialysis, universal electrode, superalloy, passivation, anodic behavior, tungsten, nickel

Abstract

Electrodialysis, especially reverse, is a promising method of water desalination, concentration of solutions, extraction of valuable components from waste and rinse water, and power generation. The main problem is the search for low-cost universal anode-cathode materials. The work aims to determine the possibility of using the VNZh90 superalloy (5 % Ni, 5 % Fe, 90 % W) and the electroplated Ni-W alloy as a universal cathode-anode material for reverse electrodialysis. The crystal structure of the Ni-W alloy was studied by X-ray diffraction analysis; the morphology was studied by scanning electron microscopy. The anodic behavior of both alloys was studied by voltammetry in 6 % HCl in a saturated NaCl solution.

The high passivity of the VNZh90 superalloy was revealed. On the repeated anodic curve, the current density of the passivation plateau decreased 2.8 times and was 37 mA/dm2. This indicates that the use of the VNZh90 superalloy is promising as a universal cathode-anode material of a reverse electrodialyzer.

The phenomenon of significant passivation for the Ni-W alloy was also revealed. The primary curve of the alloy showed two dissolution peaks and a well-defined passivation plateau. Probably, the first peak corresponded to a more active phase with a low W content. This was confirmed by the absence of the first peak on the repeated anodic curve and the identity of the passivation plateaus of the primary and repeated curves. The passivation current density was 209 mA/dm2. These data also indicate the possibility and prospects of using the electroplated Ni-W alloy as a universal cathode-anode material of a reverse electrodialyzer after optimizing the composition and deposition method of the alloy, as well as reducing the wear rate.

Author Biographies

Vadym Kovalenko, Ukrainian State University of Chemical Technology; Vyatka State University

PhD, Associate Professor

Department of Analytical Chemistry and Chemical Technology of Food Additives and Cosmetics

Senior Researcher

Competence Center "Ecological Technologies and Systems"

Valerii Kotok, Ukrainian State University of Chemical Technology; Vyatka State University

PhD, Associate Professor

Department of Processes, Apparatus and General Chemical Technology

Senior Researcher

Competence Center "Ecological Technologies and Systems"

References

  1. Brauns, E. (2008). Towards a worldwide sustainable and simultaneous large-scale production of renewable energy and potable water through salinity gradient power by combining reversed electrodialysis and solar power? Desalination, 219 (1-3), 312–323. doi: https://doi.org/10.1016/j.desal.2007.04.056
  2. Doornbusch, G., van der Wal, M., Tedesco, M., Post, J., Nijmeijer, K., Borneman, Z. (2021). Multistage electrodialysis for desalination of natural seawater. Desalination, 505, 114973. doi: https://doi.org/10.1016/j.desal.2021.114973
  3. Jang, J. (2021). Ion Exchange Membrane for Reverse Electrodialysis. Academic Journal of Polymer Science, 5 (1). doi: https://doi.org/10.19080/ajop.2021.05.555654
  4. Hulme, A. M., Davey, C. J., Tyrrel, S., Pidou, M., McAdam, E. J. (2021). Transitioning from electrodialysis to reverse electrodialysis stack design for energy generation from high concentration salinity gradients. Energy Conversion and Management, 244, 114493. doi: https://doi.org/10.1016/j.enconman.2021.114493
  5. Loza, S. A., Smyshlyaev, N. A., Korzhov, A. N., Romanyuk, N. A. (2021). Electrodialysis concentration of sulfuric acid. Chimica Techno Acta, 8 (1), 20218106. doi: https://doi.org/10.15826/chimtech.2021.8.1.06
  6. Scialdone, O., D’Angelo, A., Galia, A. (2015). Energy generation and abatement of Acid Orange 7 in reverse electrodialysis cells using salinity gradients. Journal of Electroanalytical Chemistry, 738, 61–68. doi: https://doi.org/10.1016/j.jelechem.2014.11.024
  7. Luo, F., Wang, Y., Sha, M., Wei, Y. (2019). Correlations of Ion Composition and Power Efficiency in a Reverse Electrodialysis Heat Engine. International Journal of Molecular Sciences, 20 (23), 5860. doi: https://doi.org/10.3390/ijms20235860
  8. Logan, B. E., Elimelech, M. (2012). Membrane-based processes for sustainable power generation using water. Nature, 488 (7411), 313–319. doi: https://doi.org/10.1038/nature11477
  9. Luo, X., Cao, X., Mo, Y., Xiao, K., Zhang, X., Liang, P., Huang, X. (2012). Power generation by coupling reverse electrodialysis and ammonium bicarbonate: Implication for recovery of waste heat. Electrochemistry Communications, 19, 25–28. doi: https://doi.org/10.1016/j.elecom.2012.03.004
  10. Cusick, R. D., Kim, Y., Logan, B. E. (2012). Energy Capture from Thermolytic Solutions in Microbial Reverse-Electrodialysis Cells. Science, 335 (6075), 1474–1477. doi: https://doi.org/10.1126/science.1219330
  11. Altıok, E., Kaya, T. Z., Güler, E., Kabay, N., Bryjak, M. (2021). Performance of Reverse Electrodialysis System for Salinity Gradient Energy Generation by Using a Commercial Ion Exchange Membrane Pair with Homogeneous Bulk Structure. Water, 13 (6), 814. doi: https://doi.org/10.3390/w13060814
  12. Ortiz-Imedio, R., Gomez-Coma, L., Fallanza, M., Ortiz, A., Ibañez, R., Ortiz, I. (2019). Comparative performance of Salinity Gradient Power-Reverse Electrodialysis under different operating conditions. Desalination, 457, 8–21. doi: https://doi.org/10.1016/j.desal.2019.01.005
  13. Veerman, J., Saakes, M., Metz, S. J., Harmsen, G. J. (2009). Reverse electrodialysis: Performance of a stack with 50 cells on the mixing of sea and river water. Journal of Membrane Science, 327 (1-2), 136–144. doi: https://doi.org/10.1016/j.memsci.2008.11.015
  14. Tedesco, M., Brauns, E., Cipollina, A., Micale, G., Modica, P., Russo, G., Helsen, J. (2015). Reverse electrodialysis with saline waters and concentrated brines: A laboratory investigation towards technology scale-up. Journal of Membrane Science, 492, 9–20. doi: https://doi.org/10.1016/j.memsci.2015.05.020
  15. Daniilidis, A., Vermaas, D. A., Herber, R., Nijmeijer, K. (2014). Experimentally obtainable energy from mixing river water, seawater or brines with reverse electrodialysis. Renewable Energy, 64, 123–131. doi: https://doi.org/10.1016/j.renene.2013.11.001
  16. Othman, N. H., Kabay, N., Guler, E. (2021). Principles of reverse electrodialysis and development of integrated-based system for power generation and water treatment: a review. Reviews in Chemical Engineering. doi: https://doi.org/10.1515/revce-2020-0070
  17. Mehdizadeh, S., Kakihana, Y., Abo, T., Yuan, Q., Higa, M. (2021). Power Generation Performance of a Pilot-Scale Reverse Electrodialysis Using Monovalent Selective Ion-Exchange Membranes. Membranes, 11 (1), 27. doi: https://doi.org/10.3390/membranes11010027
  18. Vermaas, D. A., Veerman, J., Saakes, M., Nijmeijer, K. (2014). Influence of multivalent ions on renewable energy generation in reverse electrodialysis. Energy & Environmental Science, 7 (4), 1434–1445. doi: https://doi.org/10.1039/c3ee43501f
  19. Post, J. W., Goeting, C. H., Valk, J., Goinga, S., Veerman, J., Hamelers, H. V. M., Hack, P. J. F. M. (2010). Towards implementation of reverse electrodialysis for power generation from salinity gradients. Desalination and Water Treatment, 16 (1-3), 182–193. doi: https://doi.org/10.5004/dwt.2010.1093
  20. Veerman, J., Saakes, M., Metz, S. J., Harmsen, G. J. (2010). Electrical Power from Sea and River Water by Reverse Electrodialysis: A First Step from the Laboratory to a Real Power Plant. Environmental Science & Technology, 44 (23), 9207–9212. doi: https://doi.org/10.1021/es1009345
  21. Spoor, P. B. (2002). Removal of nickel ions from galvanic wastewater streams using a hybrid ion exchange - electrodialysis system. Technische Universiteit Eindhoven. doi: https://doi.org/10.6100/IR551266
  22. Deabate, S., Fourgeot, F., Henn, F. (2000). X-ray diffraction and micro-Raman spectroscopy analysis of new nickel hydroxide obtained by electrodialysis. Journal of Power Sources, 87 (1-2), 125–136. doi: https://doi.org/10.1016/s0378-7753(99)00437-1
  23. Deabate, S., Fourgeot, F., Henn, F. (1999). Structural and electrochemical characterization of nickel hydroxide obtained by the new synthesis route of electrodialysis. a comparison with spherical β-Ni(OH)2. Ionics, 5 (5-6), 371–384. doi: https://doi.org/10.1007/bf02376001
  24. Kovalenko, V., Kotok, V. (2017). Definition of effectiveness of β-Ni(OH)2 application in the alkaline secondary cells and hybrid supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (89)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.110390
  25. Kovalenko, V. L., Kotok, V. A., Sykchin, A., Ananchenko, B. A., Chernyad’ev, A. V., Burkov, A. A. et. al. (2020). Al3+ Additive in the Nickel Hydroxide Obtained by High-Temperature Two-Step Synthesis: Activator or Poisoner for Chemical Power Source Application? Journal of The Electrochemical Society, 167 (10), 100530. doi: https://doi.org/10.1149/1945-7111/ab9a2a
  26. Kovalenko, V., Kotok, V. (2018). Synthesis of Ni(OH)2 by template homogeneous precipitation for application in the binder­free electrode of supercapacitor. Eastern-European Journal of Enterprise Technologies, 4 (12 (94)), 29–35. doi: https://doi.org/10.15587/1729-4061.2018.140899
  27. Kovalenko, V., Kotok, V. (2017). Study of the influence of the template concentration under homogeneous precepitation on the properties of Ni(OH)2 for supercapacitors. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.106813
  28. Kotok, V., Kovalenko, V. (2018). Definition of the aging process parameters for nickel hydroxide in the alkaline medium. Eastern-European Journal of Enterprise Technologies, 2 (12 (92)), 54–60. doi: https://doi.org/10.15587/1729-4061.2018.127764
  29. Solovov, V. A., Nikolenko, N. V., Kovalenko, V. L., Kotok, V. A., Burkov, A. А., Kondrat’ev, D. A. et. al. (2018). Synthesis of Ni(II)-Ti(IV) Layered Double Hydroxides Using Coprecipitation At High Supersaturation Method. ARPN Journal of Engineering and Applied Sciences, 13 (24), 9652–9656. Available at: http://www.arpnjournals.org/jeas/research_papers/rp_2018/jeas_1218_7500.pdf
  30. Kotok, V., Kovalenko, V., Vlasov, S. (2018). Investigation of Ni­Al hydroxide with silver addition as an active substance of alkaline batteries. Eastern-European Journal of Enterprise Technologies, 3 (6 (93)), 6–11. doi: https://doi.org/10.15587/1729-4061.2018.133465
  31. Kovalenko, V., Kotok, V. (2019). Investigation of characteristics of double Ni–Co and ternary Ni–Co–Al layered hydroxides for supercapacitor application. Eastern-European Journal of Enterprise Technologies, 2 (6 (98)), 58–66. doi: https://doi.org/10.15587/1729-4061.2019.164792
  32. Kovalenko, V., Kotok, V. (2018). Comparative investigation of electrochemically synthesized (α+β) layered nickel hydroxide with mixture of α-Ni(OH)2 and β-Ni(OH)2. Eastern-European Journal of Enterprise Technologies, 2 (6 (92)), 16–22. doi: https://doi.org/10.15587/1729-4061.2018.125886
  33. Kovalenko, V., Kotok, V. (2019). Influence of the carbonate ion on characteristics of electrochemically synthesized layered (α+β) nickel hydroxide. Eastern-European Journal of Enterprise Technologies, 1 (6 (97)), 40–46. doi: https://doi.org/10.15587/1729-4061.2019.155738
  34. Kovalenko, V., Kotok, V. (2018). Influence of ultrasound and template on the properties of nickel hydroxide as an active substance of supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 32–39. doi: https://doi.org/10.15587/1729-4061.2018.133548
  35. Kovalenko, V., Kotok, V. (2020). Bifuctional indigocarmin­intercalated Ni­Al layered double hydroxide: investigation of characteristics for pigment and supercapacitor application. Eastern-European Journal of Enterprise Technologies, 2 (12 (104)), 30–39. doi: https://doi.org/10.15587/1729-4061.2020.201282
  36. Kovalenko, V., Kotok, V. (2020). Tartrazine-intercalated Zn–Al layered double hydroxide as a pigment for gel nail polish: synthesis and characterisation. Eastern-European Journal of Enterprise Technologies, 3 (12 (105)), 29–37. doi: https://doi.org/10.15587/1729-4061.2020.205607
  37. Kovalenko, V., Kotok, V. (2020). Determination of the applicability of Zn­Al layered double hydroxide, intercalated by food dye Orange Yellow S, as a cosmetic pigment. Eastern-European Journal of Enterprise Technologies, 5 (12 (107)), 81–89. doi: https://doi.org/10.15587/1729-4061.2020.214847
  38. Vermaas, D. A., Kunteng, D., Veerman, J., Saakes, M., Nijmeijer, K. (2014). Periodic Feedwater Reversal and Air Sparging As Antifouling Strategies in Reverse Electrodialysis. Environmental Science & Technology, 48 (5), 3065–3073. doi: https://doi.org/10.1021/es4045456
  39. Tedesco, M., Scalici, C., Vaccari, D., Cipollina, A., Tamburini, A., Micale, G. (2016). Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines. Journal of Membrane Science, 500, 33–45. doi: https://doi.org/10.1016/j.memsci.2015.10.057
  40. Kim, H.-K., Lee, M.-S., Lee, S.-Y., Choi, Y.-W., Jeong, N.-J., Kim, C.-S. (2015). High power density of reverse electrodialysis with pore-filling ion exchange membranes and a high-open-area spacer. Journal of Materials Chemistry A, 3 (31), 16302–16306. doi: https://doi.org/10.1039/c5ta03571f
  41. Burmistr, M. V., Boiko, V. S., Lipko, E. O., Gerasimenko, K. O., Gomza, Y. P., Vesnin, R. L. et. al. (2014). Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers. Mechanics of Composite Materials, 50 (2), 213–222. doi: https://doi.org/10.1007/s11029-014-9408-0
  42. Vlasova, E., Kovalenko, V., Kotok, V., Vlasov, S., Sukhyy, K. (2017). A study of the influence of additives on the process of formation and corrosive properties of tripolyphosphate coatings on steel. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 45–51. doi: https://doi.org/10.15587/1729-4061.2017.111977
  43. Gaona-Tiburcio, C., Aguilar, L. M. R., Zambrano, R. P., Estupiñán, L. F., Cabral, M. J. A., Nieves-Mendoza, D. et. al. (2014). Electrochemical Noise Analysis of Nickel Based Superalloys in Acid Solutions. International Journal of Electrochemical Science, 9 (2), 523–533.
  44. Ciesla, M., Manka, M., Gradon, P., Binczyk, F. (2014). Impact of a Structure on Durability of Modified Nickel-Base Superalloys in Creep Conditions. Archives of Metallurgy and Materials, 59 (4), 1559–1563. doi: https://doi.org/10.2478/amm-2014-0264
  45. Кovalenko, V., Kotok, V. (2017). Selective anodic treatment of W(WC)-based superalloy scrap. Eastern-European Journal of Enterprise Technologies, 1 (5 (85)), 53–58. doi: https://doi.org/10.15587/1729-4061.2017.91205
  46. Kovalenko, V., Kotok, V. (2020). Investigation of the anodic behavior of w-based superalloy for electrochemical selective treatment. Eastern-European Journal of Enterprise Technologies, 6 (12 (108)), 55–60. doi: https://doi.org/10.15587/1729-4061.2020.218355
  47. Kovalenko, V., Kotok, V., Vlasov, S. (2018). Development of the electrochemical synthesis method of ultrafine cobalt powder for a superalloy production. Eastern-European Journal of Enterprise Technologies, 2 (6 (92)), 41–47. doi: https://doi.org/10.15587/1729-4061.2018.126928
  48. Kovalenko, V., Kotok, V., Vlasov, S. (2018). Definition of synthesis parameters of ultrafine nickel powder by direct electrolysis for application in superalloy production. Eastern-European Journal of Enterprise Technologies, 1 (6 (91)), 27–33. doi: https://doi.org/10.15587/1729-4061.2018.121595
  49. Kuznetsova, O. G., Levin, A. M., Sevostyanov, M. A., Bolshih, A. O. (2019). Electrochemical recycling of nickel-cobalt-containing tungsten alloys. IOP Conference Series: Materials Science and Engineering, 525, 012088. doi: https://doi.org/10.1088/1757-899x/525/1/012088
  50. Kuznetsova, O. G., Levin, A. M., Sevast’yanov, M. A., Tsybin, O. I., Bol’shikh, A. O. (2019). Electrochemical Oxidation of a Heavy Tungsten-Containing VNZh-Type Alloy and Its Components in Ammonia–Alkali Electrolytes. Russian Metallurgy (Metally), 2019 (5), 507–510. doi: https://doi.org/10.1134/s0036029519050057
  51. Kuznetsova, O. G., Levin, A. M., Sevostyanov, M. A., Tsybin, O. I., Bolshikh, A. O. (2020). Changes in electrochemical properties of a heavy tungsten alloy during its processing under the influence of DC current in ammonia-alkali solutions. IOP Conference Series: Materials Science and Engineering, 848, 012045. doi: https://doi.org/10.1088/1757-899x/848/1/012045
  52. Kuznetsova, O. G., Levin, A. M., Sevostyanov, M. A., Tsybin, O. I., Bolshikh, A. O. (2020). AC electrochemical oxidation of nickel and VNZh alloy in alkaline-ammonium solutions. IOP Conference Series: Materials Science and Engineering, 848, 012046. doi: https://doi.org/10.1088/1757-899x/848/1/012046
  53. Sridhar, T. M., Eliaz, N., Gileadi, E. (2005). Electroplating of Ni4W. Electrochemical and Solid-State Letters, 8 (3), C58. doi: https://doi.org/10.1149/1.1857114
  54. Eliaz, N., Sridhar, T. M., Gileadi, E. (2005). Synthesis and characterization of nickel tungsten alloys by electrodeposition. Electrochimica Acta, 50 (14), 2893–2904. doi: https://doi.org/10.1016/j.electacta.2004.11.038
  55. Zhu, L., Younes, O., Ashkenasy, N., Shacham-Diamand, Y., Gileadi, E. (2002). STM/AFM studies of the evolution of morphology of electroplated Ni/W alloys. Applied Surface Science, 200 (1-4), 1–14. doi: https://doi.org/10.1016/s0169-4332(02)00894-2
  56. Trelewicz, J. R., Schuh, C. A. (2009). Hot nanoindentation of nanocrystalline Ni–W alloys. Scripta Materialia, 61 (11), 1056–1059. doi: https://doi.org/10.1016/j.scriptamat.2009.08.026
  57. Sulitanu, N., Brinza, F. (2003). Structure-properties Relationships in Electrodeposited Ni-W Thin Films with Columnar Nanocrystallites. Journal of Optoelectronics and Advanced Materials, 5 (2), 421–427.
  58. Schloßmacher, P., Yamasaki, T. (2000). Structural Analysis of Electroplated Amorphous-Nanocrystalline Ni-W. Microchimica Acta, 132 (2-4), 309–313. doi: https://doi.org/10.1007/s006040050074
  59. Cesiulis, H., Podlaha-Murphy, E. J. (2003). Electrolyte Considerations of Electrodeposited Ni-W Alloys for Microdevice Fabrication. Materials Science (Medžiagotyra), 9 (4), 329–333. Available at: https://matsc.ktu.lt/index.php/MatSc/article/view/26731
  60. Yamasaki, T. (2000). High-strength Nanocrystalline Ni-W Alloys Produced by Electrodeposition. Mater. Phys. Mech., 1, 127–132. Available at: https://www.ipme.ru/e-journals/MPM/no_2100/yamasaki/yamasaki.pdf
  61. Esther, P., Joseph Kennady, C., Saravanan, P., Venkataehalam, T. (2009). Structural and Magnetic Properties of Electrodeposited Ni-Fe-W Thin Films. Journal of Non-Oxide Glasses, 1 (3), 301–309. Available at: https://chalcogen.ro/301_Esther.pdf
  62. Nenastina, Т., Bairachnaya, Т., Ved, М., Shtefan, V., Sakhnenko, N. (2007). Electrochemical Synthesis of Catalytic Active Alloys. Functional Materials, 14 (3), 395–400. Available at: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/136993/24-Nenastina.pdf?sequence=1
  63. Zemanová, M., Krivosudská, M., Chovancová, M., Jorík, V. (2011). Pulse current electrodeposition and corrosion properties of Ni–W alloy coatings. Journal of Applied Electrochemistry, 41 (9), 1077–1085. doi: https://doi.org/10.1007/s10800-011-0331-y
  64. Alimadadi, H., Ahmadi, M., Aliofkhazraei, M., Younesi, S. R. (2009). Corrosion properties of electrodeposited nanocrystalline and amorphous patterned Ni–W alloy. Materials & Design, 30 (4), 1356–1361. doi: https://doi.org/10.1016/j.matdes.2008.06.036

Downloads

Published

2021-08-26

How to Cite

Kovalenko, V., & Kotok, V. (2021). Determination of the applicability of the tungsten-containing material as low-cost electrodes for reverse electrodialysis . Eastern-European Journal of Enterprise Technologies, 4(12(112), 39–46. https://doi.org/10.15587/1729-4061.2021.239015

Issue

Section

Materials Science