Determining the strained state of prefabricated metal corrugated structures of a tunnel overpass exposed to the dynamic loading from railroad rolling stock

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.259439

Keywords:

tunnel overpass, prefabricated metal corrugated structures, railroad track, acceleration of metal structures, vertical and horizontal strains of structures

Abstract

This paper reports the analysis of prospects for the use of prefabricated metal corrugated structures in the body of the embankment of a railroad track in the form of a tunnel overpass in order to pass road vehicles and railroad rolling stock.

A technique of inertial dynamic tests of the deformed state of a tunnel overpass from prefabricated metal corrugated structures during the passage of railroad rolling stock is given, by measuring accelerations at the top and on the sides of overpass structures.

An algorithm is proposed for processing the acceleration signal for assessing the strained state of metal corrugated structures of a tunnel overpass under the action of dynamic load from railroad transport.

Experimental dynamic measurements of accelerations arising at the top and on the sides of a tunnel overpass during the passage of passenger and freight railroad rolling stock were carried out. The maximum value of accelerations arising at the top of a tunnel overpass during the passage of a freight train was 7.99 m/s2, and when passing a passenger train – 6.21 m/s2; the maximum accelerations that occur on the sides were 2.63 m/s2 and 1.77 m/s2.

It is established that the maximum deformations of metal corrugated structures of the top of a tunnel overpass, when passing freight and passenger trains are, respectively, 1.63 mm and 1.11 mm. The maximum strains of metal corrugated structures on the sides of an overpass are 1.07 mm and 0.48 mm.

The value of relative deformations in the vertical and horizontal dimensions of the structures of a tunnel overpass under the action of dynamic loads from the railroad rolling stock has been found. The relative vertical strains of an overpass amounted to 0.020 %; horizontal – 0.012 %.

The practical significance of this work is that with the help of the devised procedure for measuring accelerations, it is possible to assess the strained state of metal corrugated structures under the influence of dynamic loads from the railroad rolling stock

Author Biographies

Vitalii Kovalchuk, Lviv Institute of Ukrainian State University of Science and Technology

Doctor of Technical Sciences, Associate Professor

Department of Rolling Stock of Railways And Tracks

Maksym Koval, Lviv Polytechnic National University

PhD

Department of Highways and Bridges

Artur Onyshchenko, National Transport University

Doctor of Technical Sciences, Associate Professor

Department of Bridges and Tunnels

Ivan Kravets, Lviv Institute of Ukrainian State University of Science and Technology

PhD, Lecturer

Department of General Engineering Training of Railway Transport Specialists

Olena Bal, Lviv Institute of Ukrainian State University of Science and Technology

PhD, Associate Professor, Head of Department

Department of Rolling Stock of Railways And Tracks

Ruslan Markul, Ukrainian State University of Science and Technologies

PhD

Department of Transport Infrastructure

Svitlana Vikhot, Lviv Polytechnic National University

PhD, Associate Professor

Department of Building Production

Oleksiy Petrenko, Lviv Polytechnic National University

PhD, Associate Professor

Department of Building Production

Roman Rybak, Lviv Polytechnic National University

Postgraduate Student

Department of Building Production

Andriy Milyanych, Lviv Institute of Ukrainian State University of Science and Technology

PhD, Associate Professor

Department of Rolling Stock of Railways And Tracks

References

  1. Kovalchuk, V., Markul, R., Bal, O., Мilyanych, A., Pentsak, A., Parneta, B., Gajda, A. (2017). The study of strength of corrugated metal structures of railroad tracks. Eastern-European Journal of Enterprise Technologies, 2 (7 (86)), 18–25. doi: https://doi.org/10.15587/1729-4061.2017.96549
  2. Mistewicz, M. (2019). Risk assessment of the use of corrugated metal sheets for construction of road soil-shell structures. Roads and Bridges - Drogi i Mosty, 18 (2), 89–107. doi: https://doi.org/10.7409/rabdim.019.006
  3. Bęben, D. (2013). Evaluation of backfill corrosivity around steel road culverts. Roads and Bridges - Drogi i Mosty, 12 (3), 255–268. doi: https://doi.org/10.7409/rabdim.013.018
  4. Kovalchuk, V., Kovalchuk, Y., Sysyn, M., Stankevych, V., Petrenko, O. (2018). Estimation of carrying capacity of metallic corrugated structures of the type Multiplate MP 150 during interaction with backfill soil. Eastern-European Journal of Enterprise Technologies, 1 (1 (91)), 18–26. doi: https://doi.org/10.15587/1729-4061.2018.123002
  5. Directive (EU) 2016/797 of the European Parliament and of the Council of 11 May 2016 on the interoperability of the rail system within the European Union. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016L0797
  6. VBN V.2.3-218-198:2007. Sporudy transportu. Proektuvannia ta budivnytstvo sporud iz metalevykh hofrovanykh konstruktsiy na avtomobilnykh dorohakh zahalnoho korystuvannia (2007). Kyiv. URL: http://online.budstandart.com/ua/catalog/doc-page?id_doc=24463
  7. Kovalchuk, V., Markul, R., Pentsak, A., Parneta, B., Gayda, O., Braichenko, S. (2017). Study of the stress-strain state in defective railway reinforced-concrete pipes restored with corrugated metal structures. Eastern-European Journal of Enterprise Technologies, 5 (1 (89)), 37–44. doi: https://doi.org/10.15587/1729-4061.2017.109611
  8. Kovalchuk, V., Luchko, J., Bondarenko, I., Markul, R., Parneta, B. (2016). Research and analysis of the stressed-strained state of metal corrugated structures of railroad tracks. Eastern-European Journal of Enterprise Technologies, 6 (7 (84)), 4–9. doi: https://doi.org/10.15587/1729-4061.2016.84236
  9. Machelski, C. (2016). Steel plate curvatures of soil-steel structures during construction and exploitation. Roads and Bridges - Drogi i Mosty, 15 (3), 207–220. doi: https://doi.org/10.7409/rabdim.016.013
  10. Esmaeili, M., Zakeri, J. A., Abdulrazagh, P. H. (2013). Minimum depth of soil cover above long-span soil-steel railway bridges. International Journal of Advanced Structural Engineering, 5 (1), 7. doi: https://doi.org/10.1186/2008-6695-5-7
  11. Liu, Y., Hoult, N. A., Moore, I. D. (2020). Structural Performance of In-Service Corrugated Steel Culvert under Vehicle Loading. Journal of Bridge Engineering, 25 (3). doi: https://doi.org/10.1061/(asce)be.1943-5592.0001524
  12. Kovalchuk, V., Kuzyshyn, A., Kostritsya, S., Sobolevska, Y., Batig, A., Dovganyuk, S. (2018). Improving a methodology of theoretical determination of the frame and directing forсes in modern diesel trains. Eastern-European Journal of Enterprise Technologies, 6 (7 (96)), 19–26. doi: https://doi.org/10.15587/1729-4061.2018.149838
  13. Nabochenko, O., Sysyn, M., Kovalchuk, V., Kovalchuk, Y., Pentsak, A., Braichenko, S. (2019). Studying the railroad track geometry deterioration as a result of an uneven subsidence of the ballast layer. Eastern-European Journal of Enterprise Technologies, 1 (7 (97)), 50–59. doi: https://doi.org/10.15587/1729-4061.2019.154864
  14. Luchko, J., Kovalchuk, V., Kravets, I., Gajda, O., Onyshchenko, A. (2020). Determining patterns in the stressed­deformed state of the railroad track subgrade reinforced with tubular drains. Eastern-European Journal of Enterprise Technologies, 5 (7 (107)), 6–13. doi: https://doi.org/10.15587/1729-4061.2020.213525
  15. Kovalchuk, V., Sobolevska, Y., Onyshchenko, A., Bal, O., Kravets, I., Pentsak, A. et. al. (2022). Investigating the influence of the diameter of a fiberglass pipe on the deformed state of railroad transportation structure “embankment-pipe.” Eastern-European Journal of Enterprise Technologies, 2 (7 (116)), 35–43. doi: https://doi.org/10.15587/1729-4061.2022.254573
  16. Gera, B., Kovalchuk, V. (2019). A study of the effects of climatic temperature changes on the corrugated structure. Eastern-European Journal of Enterprise Technologies, 3 (7 (99)), 26–35. doi: https://doi.org/10.15587/1729-4061.2019.168260
  17. Stankevych, V. Z., Butrak, I. O., Kovalchuk, V. V. (2018). Cracks Interaction in the Elastic Composite under Action of the Harmonic Loading Field. 2018 XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED). doi: https://doi.org/10.1109/diped.2018.8543323
  18. Gerber, U., Zoll, A., Fengler, W. (2015). Verschleiß und Fahrflächenermüdung an Weichen mit starrer Herzstückspitze. Eisenbahntechnische Rundschau, 1, 36–41.
  19. Zoll, A., Gerber, U., Fengler, W. (2016). The measuring system ESAH-M. Eisenbahningenieur Kalender, 49–62.
  20. Scholz, S., Lommock, R. (2018). Models for Onboard Train Diagnostics Data to Improve Condition-Based Maintenance. Automated People Movers and Automated Transit Systems 2018. doi: https://doi.org/10.1061/9780784481318.010
  21. Sysyn, M., Gerber, U., Nabochenko, O., Li, Y., Kovalchuk, V. (2019). Indicators for common crossing structural health monitoring with track-side inertial measurements. Acta Polytechnica, 59 (2), 170–181. doi: https://doi.org/10.14311/ap.2019.59.0170
  22. Sysyn, M., Nabochenko, O., Kluge, F., Kovalchuk, V., Pentsak, A. (2019). Common Crossing Structural Health Analysis with Track-Side Monitoring. Communications - Scientific Letters of the University of Zilina, 21 (3), 77–84. doi: https://doi.org/10.26552/com.c.2019.3.77-84
  23. Izvolt, L., Sestakova, J., Smalo, M. (2016). Analysis of Results of Monitoring and Prediction of Quality Development of Ballasted and Ballastless Track Superstructure and its Transition Areas. Communications - Scientific Letters of the University of Zilina, 18 (4), 19–29. doi: https://doi.org/10.26552/com.c.2016.4.19-29
  24. Sysyn, M., Gruen, D., Gerber, U., Nabochenko, O., Kovalchuk, V. (2019). Turnout Monitoring with Vehicle Based Inertial Measurements of Operational Trains: A Machine Learning Approach. Communications - Scientific Letters of the University of Zilina, 21 (1), 42–48. doi: https://doi.org/10.26552/com.c.2019.1.42-48
  25. Sysyn, M., Przybylowicz, M., Nabochenko, O., Liu, J. (2021). Mechanism of Sleeper–Ballast Dynamic Impact and Residual Settlements Accumulation in Zones with Unsupported Sleepers. Sustainability, 13 (14), 7740. doi: https://doi.org/10.3390/su13147740
  26. Jamshidi, A., Hajizadeh, S., Su, Z., Naeimi, M., Núñez, A., Dollevoet, R. et. al. (2018). A decision support approach for condition-based maintenance of rails based on big data analysis. Transportation Research Part C: Emerging Technologies, 95, 185–206. doi: https://doi.org/10.1016/j.trc.2018.07.007
  27. Sysyn, M., Gerber, U., Nabochenko, O., Kovalchuk, V. (2019). Common crossing fault prediction with track based inertial measurements: statistical vs. mechanical approach. Pollack Periodica, 14 (2), 15–26. doi: https://doi.org/10.1556/606.2019.14.2.2
  28. Ben Ali, J., Saidi, L., Harrath, S., Bechhoefer, E., Benbouzid, M. (2018). Online automatic diagnosis of wind turbine bearings progressive degradations under real experimental conditions based on unsupervised machine learning. Applied Acoustics, 132, 167–181. doi: https://doi.org/10.1016/j.apacoust.2017.11.021
  29. Domin, R., Mostovych, A., Kolomiiets, A. (2014). Improving the means of experimental determination of dynamic loading of the rolling stock. ТЕKA. Commission of motorization and energetics in agriculture, 14 (1), 37–49. Available at: http://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-d7fbd1b2-71d4-4101-b564-8f2ec1d12342
  30. Attoh-Okine, N. O. (2017). Big Data and Differential Privacy: Analysis Strategies for Railway Track Engineering. John Wiley & Sons. doi: https://doi.org/10.1002/9781119229070
  31. Liu, X., Markiene, V., Shevtsov, I., Dollevoet, R. (2015). Experimental study of key parameters in turnout crossing degradation process. 10th International Conference on Contact Mechanics. Colorado. Available at: https://www.narcis.nl/publication/RecordID/oai:tudelft.nl:uuid%3A6faf146e-fc15-4d00-a287-bba31442d9ca
  32. Martey, E. N., Ahmed, L., Attoh-Okine, N. (2017). Track geometry big data analysis: A machine learning approach. 2017 IEEE International Conference on Big Data (Big Data). doi: https://doi.org/10.1109/bigdata.2017.8258381
  33. Liu, J., Liu, Z., Wang, P., Kou, L., Sysyn, M. (2022). Dynamic characteristics of the railway ballast bed under water-rich and low-temperature environments. Engineering Structures, 252, 113605. doi: https://doi.org/10.1016/j.engstruct.2021.113605
  34. Si, X., Zhang, Z., Hu, C. (2017). Data-Driven Remaining Useful Life Prognosis Techniques: Stochastic Models, Methods and Applications. Springer, 430. doi: https://doi.org/10.1007/978-3-662-54030-5
  35. Gebraeel, N. Z., Lawley, M. A., Li, R., Ryan, J. K. (2005). Residual-life distributions from component degradation signals: A Bayesian approach. IIE Transactions, 37 (6), 543–557. doi: https://doi.org/10.1080/07408170590929018
  36. Ma, Y., Mashal, A. A., Markine, V. L. (2018). Modelling and experimental validation of dynamic impact in 1:9 railway crossing panel. Tribology International, 118, 208–226. doi: https://doi.org/10.1016/j.triboint.2017.09.036

Downloads

Published

2022-06-30

How to Cite

Kovalchuk, V., Koval, M., Onyshchenko, A., Kravets, I., Bal, O., Markul, R., Vikhot, S., Petrenko, O., Rybak, R., & Milyanych, A. (2022). Determining the strained state of prefabricated metal corrugated structures of a tunnel overpass exposed to the dynamic loading from railroad rolling stock . Eastern-European Journal of Enterprise Technologies, 3(7(117), 50–58. https://doi.org/10.15587/1729-4061.2022.259439

Issue

Section

Applied mechanics