Application of artificial neural network for wheat yield forecasting

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.259653

Keywords:

yield forecasting, artificial neural network, wheat yield, independent variables

Abstract

A given model of yield forecasting using an artificial neural network connects the wheat crop with the amount of productive moisture in the soil, soil fertility, weather, and factors in the presence of pests, diseases, and weeds. The difficulty of creating a yield forecast system is in the correct choice of predictors that have the greatest impact on yield.

To build the model, moisture in the 100 cm layer of the soil, the content of nitrogen, phosphorus, humus, and soil acidity in the soil were used as input parameters. The amount of precipitation over 4 months, the average air temperature for the same period, as well as the presence of diseases, pests, and weeds were also taken into consideration. Data on 13 districts of the North Kazakhstan region in the period from 2008 to 2017 were used. The output parameter was the yield of spring wheat over the same time period.

The relative importance of input variables in relation to the output variable was used to determine the weight values of input variables.

An artificial neural network of error backpropagation was used as a method. The advantage of this method is that the quality of the forecast increases with a large amount of training data, as well as the ability to model nonlinear relationships between different data sources.

After training the artificial neural network and obtaining predictive data, good results were achieved for predicting wheat yields (p=0.52, mean absolute error in percentage (MAPE)=12.02 %, root mean square error (RMSE)=3.368).

Thus, it is assumed that the developed model for forecasting wheat yields based on data can be easily adapted for other crops and places and will allow the adoption of the right strategies to ensure food security

Author Biographies

Gailya Aubakirova, Manash Kozybayev North Kazakhstan University

Doctorant

Department of Energetic and Radioelectronics

Victor Ivel, Manash Kozybayev North Kazakhstan University

Doctor of Sciences in Engineering, Professor

Department of Energetic and Radioelectronics

Yuliya Gerassimova, Manash Kozybayev North Kazakhstan University

Candidate of Engineering Sciences

Department of Energetic and Radioelectronics

Sayat Moldakhmetov, Manash Kozybayev North Kazakhstan University

PhD

Department of Energetic and Radioelectronics

Pavel Petrov, Manash Kozybayev North Kazakhstan University

PhD

Department of Energetic and Radioelectronics

References

  1. Phalan, B., Green, R., Balmford, A. (2014). Closing yield gaps: perils and possibilities for biodiversity conservation. Philosophical Transactions of the Royal Society B: Biological Sciences, 369 (1639), 20120285. doi: https://doi.org/10.1098/rstb.2012.0285
  2. Tilman, D., Balzer, C., Hill, J., Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 108 (50), 20260–20264. doi: https://doi.org/10.1073/pnas.1116437108
  3. Basso, B., Liu, L. (2019). Seasonal crop yield forecast: Methods, applications, and accuracies. Advances in Agronomy, 201–255. doi: https://doi.org/10.1016/bs.agron.2018.11.002
  4. Ben-Ari, T., Boé, J., Ciais, P., Lecerf, R., Van der Velde, M., Makowski, D. (2018). Causes and implications of the unforeseen 2016 extreme yield loss in the breadbasket of France. Nature Communications, 9 (1). doi: https://doi.org/10.1038/s41467-018-04087-x
  5. Funk, C., Shukla, S., Thiaw, W. M., Rowland, J., Hoell, A., McNally, A. et. al. (2019). Recognizing the Famine Early Warning Systems Network: Over 30 Years of Drought Early Warning Science Advances and Partnerships Promoting Global Food Security. Bulletin of the American Meteorological Society, 100 (6), 1011–1027. doi: https://doi.org/10.1175/bams-d-17-0233.1
  6. Headey, D. (2011). Rethinking the global food crisis: The role of trade shocks. Food Policy, 36 (2), 136–146. doi: https://doi.org/10.1016/j.foodpol.2010.10.003
  7. Johnson, D. M. (2014). An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. Remote Sensing of Environment, 141, 116–128. doi: https://doi.org/10.1016/j.rse.2013.10.027
  8. MacDonald, R. B., Hall, F. G. (1980). Global Crop Forecasting. Science, 208 (4445), 670–679. doi: https://doi.org/10.1126/science.208.4445.670
  9. Puma, M. J., Bose, S., Chon, S. Y., Cook, B. I. (2015). Assessing the evolving fragility of the global food system. Environmental Research Letters, 10 (2), 024007. doi: https://doi.org/10.1088/1748-9326/10/2/024007
  10. Stone, R. C., Meinke, H. (2005). Operational seasonal forecasting of crop performance. Philosophical Transactions of the Royal Society B: Biological Sciences, 360 (1463), 2109–2124. doi: https://doi.org/10.1098/rstb.2005.1753
  11. Fischer, R. A. (2015). Definitions and determination of crop yield, yield gaps, and of rates of change. Field Crops Research, 182, 9–18. doi: https://doi.org/10.1016/j.fcr.2014.12.006
  12. Nandram, B., Berg, E., Barboza, W. (2013). A hierarchical Bayesian model for forecasting state-level corn yield. Environmental and Ecological Statistics, 21 (3), 507–530. doi: https://doi.org/10.1007/s10651-013-0266-z
  13. Pease, J. W., Wade, E. W., Skees, J. S., Shrestha, C. M. (1993). Comparisons between Subjective and Statistical Forecasts of Crop Yields. Review of Agricultural Economics, 15 (2), 339. doi: https://doi.org/10.2307/1349453
  14. Lobell, D. B., Schlenker, W., Costa-Roberts, J. (2011). Climate Trends and Global Crop Production Since 1980. Science, 333 (6042), 616–620. doi: https://doi.org/10.1126/science.1204531
  15. Arkin, G. F., Richardson, C. W., Maas, S. J. (1980). Forecasting Grain Sorghum Yields Using Simulated Weather Data and Updating Techniques. Transactions of the ASAE, 23 (3), 0676–0680. doi: https://doi.org/10.13031/2013.34645
  16. Kadaja, J., Saue, T., Vii, P. (2009). Probabilistic Yield Forecast Based on Aproduction Process Model. Computer and Computing Technologies in Agriculture II, Volume 1, 487–494. doi: https://doi.org/10.1007/978-1-4419-0209-2_50
  17. Reynolds, C. A., Yitayew, M., Slack, D. C., Hutchinson, C. F., Huete, A., Petersen, M. S. (2000). Estimating crop yields and production by integrating the FAO Crop Specific Water Balance model with real-time satellite data and ground-based ancillary data. International Journal of Remote Sensing, 21 (18), 3487–3508. doi: https://doi.org/10.1080/014311600750037516
  18. Chlingaryan, A., Sukkarieh, S., Whelan, B. (2018). Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Computers and Electronics in Agriculture, 151, 61–69. doi: https://doi.org/10.1016/j.compag.2018.05.012
  19. Goodfellow, I., Bengio, Y., Courville, A. (2016). Deep Learning. MIT Press. Available at: https://www.deeplearningbook.org/
  20. Tian, H., Wang, P., Tansey, K., Zhang, S., Zhang, J., Li, H. (2020). An IPSO-BP neural network for estimating wheat yield using two remotely sensed variables in the Guanzhong Plain, PR China. Computers and Electronics in Agriculture, 169, 105180. doi: https://doi.org/10.1016/j.compag.2019.105180
  21. Kern, A., Barcza, Z., Marjanović, H., Árendás, T., Fodor, N., Bónis, P. et. al. (2018). Statistical modelling of crop yield in Central Europe using climate data and remote sensing vegetation indices. Agricultural and Forest Meteorology, 260-261, 300–320. doi: https://doi.org/10.1016/j.agrformet.2018.06.009
  22. Singh, P. K., Singh, K. K., Singh, P., Balasubramanian, R., Baxla, A. K., Kumar, B. et. al. (2017). Forecasting of wheat yield in various agro-climatic regions of Bihar by using CERES-Wheat model. Journal of Agrometeorology, 19 (4), 346–349. doi: https://doi.org/10.54386/jam.v19i4.604
  23. Portmann, F. T., Siebert, S., Döll, P. (2010). MIRCA2000-Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Global Biogeochemical Cycles, 24 (1). doi: https://doi.org/10.1029/2008gb003435
  24. Giri, A. K., Bhan, M., Agrawal, K. K. (2017). Districtwise wheat and rice yield predictions using meteorological variables in eastern Madhya Pradesh. Journal of Agrometeorology, 19 (4), 366–368. doi: https://doi.org/10.54386/jam.v19i4.610
  25. Singh, M., Sharma, S. (2017). Forecasting the maize yield in Himachal Pradesh using climatic variables. Journal of Agrometeorology, 19 (2), 167–169. doi: https://doi.org/10.54386/jam.v19i2.715
  26. Schauberger, B., Gornott, C., Wechsung, F. (2017). Global evaluation of a semiempirical model for yield anomalies and application to within-season yield forecasting. Global Change Biology, 23 (11), 4750–4764. doi: https://doi.org/10.1111/gcb.13738
  27. Caselli, M., Trizio, L., de Gennaro, G., Ielpo, P. (2008). A Simple Feedforward Neural Network for the PM10 Forecasting: Comparison with a Radial Basis Function Network and a Multivariate Linear Regression Model. Water, Air, and Soil Pollution, 201 (1-4), 365–377. doi: https://doi.org/10.1007/s11270-008-9950-2
  28. Niedbała, G., Kurasiak-Popowska, D., Stuper-Szablewska, K., Nawracała, J. (2020). Application of Artificial Neural Networks to Analyze the Concentration of Ferulic Acid, Deoxynivalenol, and Nivalenol in Winter Wheat Grain. Agriculture, 10 (4), 127. doi: https://doi.org/10.3390/agriculture10040127
  29. Zaefizadeh, M., Jalili, A., Khayatnezhad, M., Gholamin, R., Mokhtari, T. (2011). Comparison of multiple linear regressions (MLR) and artificial neural network (ANN) in predicting the yield using its components in the hulless barley. Advances in Environmental Biology, 5, 109–113. Available at: https://www.academia.edu/77348556/Comparison_of_Multiple_Linear_Regressions_MLR_and_Artificial_Neural_Network_ANN_in_Predicting_the_Yield_Using_its_Components_in_the_Hulless_Barley
  30. Agentstvo Respubliki Kazakhstan po statistike. Portret sela (2011). Astana, 92. Available at: https://stat.gov.kz/api/getFile/?docId=WC16200032726
  31. Gribskiy, A. A. (2005). Pochvy i zemel'nye resursy Severo-Kazakhstanskoy oblasti. Petropavlovsk, 34.
  32. Ritchie, S. W., Hanway, J. J., Thompson, H. E. (1985). How a soybean plant develops. Special Report No. 53. Ames, Iowa. Available at: http://publications.iowa.gov/14855/1/1985%20How%20a%20Soybean%20Plant%20Develops.pdf
  33. Arinov, K. K., Musynov, K. M., Shestakova, N. A., Serekpaev, A. A. (2013). Rastenievodstvo. Astana, 507.
  34. Bureau of National Statistics of the Agency for Strategic Planning and Reforms of the Republic of Kazakhstan. Available at: https://www.gov.kz/memleket/entities/stat?lang=ru
  35. Deep Learning Toolbox. MathWorks. Available at: https://www.mathworks.com/products/deep-learning.html
  36. Drummond, S. T., Sudduth, K. A., Birrell, S. J. (1995). Analysis and correlation methods for spatial data. ASAE Paper No. 951335. St. Joseph.
  37. Irmak, A., Jones, J. W., Batchelor, W. D., Irmak, S., Paz, J. O., Boote, K. J. (2006). Analysis of spatial yield variability using a combined crop model-empirical approach. Transactions of the ASABE, 49 (3), 811–818. doi: https://doi.org/10.13031/2013.20464
  38. Wilkerson, J. B., Sui, R., Hart, W. E., Wilhelm, L. R., Howard, D. D. (1999). Artificial neural networks for determining nitrogen status in corn. ASAE Paper No. 99-3042. St. Joseph, Mich.: ASAE.
  39. Braga, R. P. (2000). Predicting the spatial pattern of grain yield under water limiting conditions. Gainesville.
  40. Liu, J., Goering, C. E., Tian, L. (2001). A neural network for setting target corn yields. Transactions of the ASAE, 44 (3). doi: https://doi.org/10.13031/2013.6097
  41. Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323 (6088), 533–536. doi: https://doi.org/10.1038/323533a0
  42. Dayhoff, J. E. (1990). Neural Network Architectures: An Introduction. Van Nostrand Reinhold Company, 259.
  43. Khoshnevisan, B., Rafiee, S., Omid, M., Mousazadeh, H. (2014). Development of an intelligent system based on ANFIS for predicting wheat grain yield on the basis of energy inputs. Information Processing in Agriculture, 1 (1), 14–22. doi: https://doi.org/10.1016/j.inpa.2014.04.001
  44. Khoshnevisan, B., Rafiee, S., Omid, M., Mousazadeh, H. (2014). Prediction of potato yield based on energy inputs using multi-layer adaptive neuro-fuzzy inference system. Measurement, 47, 521–530. doi: https://doi.org/10.1016/j.measurement.2013.09.020
  45. Amid, S., Mesri Gundoshmian, T. (2016). Prediction of output energies for broiler production using linear regression, ANN (MLP, RBF), and ANFIS models. Environmental Progress & Sustainable Energy, 36 (2), 577–585. doi: https://doi.org/10.1002/ep.12448
  46. Vivas, E., Allende-Cid, H., Salas, R. (2020). A Systematic Review of Statistical and Machine Learning Methods for Electrical Power Forecasting with Reported MAPE Score. Entropy, 22 (12), 1412. doi: https://doi.org/10.3390/e22121412
  47. Wang, X., Huang, J., Feng, Q., Yin, D. (2020). Winter Wheat Yield Prediction at County Level and Uncertainty Analysis in Main Wheat-Producing Regions of China with Deep Learning Approaches. Remote Sensing, 12 (11), 1744. doi: https://doi.org/10.3390/rs12111744
  48. Zhao, Y., Potgieter, A. B., Zhang, M., Wu, B., Hammer, G. L. (2020). Predicting Wheat Yield at the Field Scale by Combining High-Resolution Sentinel-2 Satellite Imagery and Crop Modelling. Remote Sensing, 12 (6), 1024. doi: https://doi.org/10.3390/rs12061024
  49. Felipe Maldaner, L., de Paula Corrêdo, L., Fernanda Canata, T., Paulo Molin, J. (2021). Predicting the sugarcane yield in real-time by harvester engine parameters and machine learning approaches. Computers and Electronics in Agriculture, 181, 105945. doi: https://doi.org/10.1016/j.compag.2020.105945
  50. Sharma, L. K., Singh, T. N. (2017). Regression-based models for the prediction of unconfined compressive strength of artificially structured soil. Engineering with Computers, 34 (1), 175–186. doi: https://doi.org/10.1007/s00366-017-0528-8
  51. Peng, J., Kim, M., Kim, Y., Jo, M., Kim, B., Sung, K., Lv, S. (2017). Constructing Italian ryegrass yield prediction model based on climatic data by locations in South Korea. Grassland Science, 63 (3), 184–195. doi: https://doi.org/10.1111/grs.12163
  52. Kim, S., Kim, H. (2016). A new metric of absolute percentage error for intermittent demand forecasts. International Journal of Forecasting, 32 (3), 669–679. doi: https://doi.org/10.1016/j.ijforecast.2015.12.003
  53. Bhojani, S. H., Bhatt, N. (2020). Wheat crop yield prediction using new activation functions in neural network. Neural Computing and Applications, 32 (17), 13941–13951. doi: https://doi.org/10.1007/s00521-020-04797-8
  54. Singh, R., Umrao, R. K., Ahmad, M., Ansari, M. K., Sharma, L. K., Singh, T. N. (2017). Prediction of geomechanical parameters using soft computing and multiple regression approach. Measurement, 99, 108–119. doi: https://doi.org/10.1016/j.measurement.2016.12.023
  55. Chen, J.-F., Do, Q., Nguyen, T., Doan, T. (2018). Forecasting Monthly Electricity Demands by Wavelet Neuro-Fuzzy System Optimized by Heuristic Algorithms. Information, 9 (3), 51. doi: https://doi.org/10.3390/info9030051
  56. Gandhi, N., Petkar, O., Armstrong, L. J. (2016). Rice crop yield prediction using artificial neural networks. 2016 IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR). doi: https://doi.org/10.1109/tiar.2016.7801222
  57. Gandhi, N., Armstrong, L. J., Petkar, O., Tripathy, A. K. (2016). Rice crop yield prediction in India using support vector machines. 2016 13th International Joint Conference on Computer Science and Software Engineering (JCSSE). doi: https://doi.org/10.1109/jcsse.2016.7748856
  58. Schwalbert, R. A., Amado, T., Corassa, G., Pott, L. P., Prasad, P. V. V., Ciampitti, I. A. (2020). Satellite-based soybean yield forecast: Integrating machine learning and weather data for improving crop yield prediction in southern Brazil. Agricultural and Forest Meteorology, 284, 107886. doi: https://doi.org/10.1016/j.agrformet.2019.107886
  59. Mishra, S., Paygude, P., Chaudhary, S., Idate, S. (2018). Use of data mining in crop yield prediction. 2018 2nd International Conference on Inventive Systems and Control (ICISC). doi: https://doi.org/10.1109/icisc.2018.8398908
  60. Filippi, P., Jones, E. J., Wimalathunge, N. S., Somarathna, P. D. S. N., Pozza, L. E., Ugbaje, S. U. et. al. (2019). An approach to forecast grain crop yield using multi-layered, multi-farm data sets and machine learning. Precision Agriculture, 20 (5), 1015–1029. doi: https://doi.org/10.1007/s11119-018-09628-4
  61. Tao, F., Xiao, D., Zhang, S., Zhang, Z., Rötter, R. P. (2017). Wheat yield benefited from increases in minimum temperature in the Huang-Huai-Hai Plain of China in the past three decades. Agricultural and Forest Meteorology, 239, 1–14. doi: https://doi.org/10.1016/j.agrformet.2017.02.033

Downloads

Published

2022-06-30

How to Cite

Aubakirova, G., Ivel, V., Gerassimova, Y., Moldakhmetov, S., & Petrov, P. (2022). Application of artificial neural network for wheat yield forecasting. Eastern-European Journal of Enterprise Technologies, 3(4 (117), 31–39. https://doi.org/10.15587/1729-4061.2022.259653

Issue

Section

Mathematics and Cybernetics - applied aspects