Heat transfer of staggered bundles of flat oval tubes in transverse flow

Authors

  • Вадим Анатолійович Кондратюк National technical university of Ukraine "Kiev Polytechnic Institute" Pobedy ave, 37, Kiev, Ukraine 03056, Ukraine https://orcid.org/0000-0001-5035-311X
  • Олександр Михайлович Терех National technical university of Ukraine "Kiev Polytechnic Institute" Pobedy ave, 37, Kiev, Ukraine 03056, Ukraine
  • Олександр Володимирович Баранюк National technical university of Ukraine "Kiev Polytechnic Institute" Pobedy ave, 37, Kiev, Ukraine 03056, Ukraine https://orcid.org/0000-0001-6008-6465
  • Євген Миколайович Письменний National technical university of Ukraine "Kiev Polytechnic Institute" Pobedy ave, 37, Kiev, Ukraine 03056, Ukraine https://orcid.org/0000-0001-6403-6596

DOI:

https://doi.org/10.15587/1729-4061.2015.37318

Keywords:

tube, profile, flat-oval, oval, round, flow, heat transfer, intensity, staggered, transverse

Abstract

The paper deals with investigating convective heat transfer for virtually unstudied staggered bundles of flat-oval tubes at their transverse air flow around. Experiments were conducted in an open-circuit wind tunnel with rectangular cross-section in the range of Reynolds numbers change from 2000 to 30000. In the course of experiments, the average convective heat transfer coefficients were determined. When processing and analyzing experimental data and dependencies of Nusselt numbers on Reynolds numbers of bundles of flat-oval tubes, much attention was paid to factors, which may affect the heat transfer intensity. During the experiments, several of these factors: operation factor - flow rate W, geometrical factors: back pitch between tubes S1, long pitch S2, the ratio of longitudinal to transverse tube size (profile elongation) d2/d1 were identified.

Author Biographies

Вадим Анатолійович Кондратюк, National technical university of Ukraine "Kiev Polytechnic Institute" Pobedy ave, 37, Kiev, Ukraine 03056

Junior Researcher

Chair of nuclear power plants and engineering thermophysics

Олександр Михайлович Терех, National technical university of Ukraine "Kiev Polytechnic Institute" Pobedy ave, 37, Kiev, Ukraine 03056

PhD, Senior Researcher

Chair of nuclear power plants and engineering thermophysics

Олександр Володимирович Баранюк, National technical university of Ukraine "Kiev Polytechnic Institute" Pobedy ave, 37, Kiev, Ukraine 03056

PhD, Senior Lecturer

Chair of nuclear power plants and engineering thermophysics

Євген Миколайович Письменний, National technical university of Ukraine "Kiev Polytechnic Institute" Pobedy ave, 37, Kiev, Ukraine 03056

Doctor of Technical Sciences, professor

Head of the department of nuclear power plants and engineering thermophysics

References

  1. Case, V. M., London, A. L. (1962). Compact heat exchangers. Gosenergoizdat, 160.
  2. Antufiev, V. M. (1966). The effectiveness of different forms of convective heating surfaces. Energy, 184.
  3. Kutateladze, S. S. (1990). Heat transfer and flow resistance. Reference Guide. Energoatomizdat, 368.
  4. Zhukauskas, A. A. (1982). Convective transfer in heat exchangers. Science, 472.
  5. Ala Ali Hasan (2004). Thermal-hydraulic perfomance of oval tubes in a cross-flow of air. Heat and Mass Transfer, accepted for publication. ТHP 2004 by author and ТHP 2004 Springer-Verlag. By permission, 1–32.
  6. Ota, T., Aiba, T., Tsuruta, T., Kaga, M. (1983). Forced Convection Heat Transfer from an Elliptic Cylinder of Axis Ratio. Bulletin of JSME, 26 (212), 262–267. doi: 10.1299/jsme1958.26.262
  7. Ota, T., Nishiyama, H., Taoka, Y. (1984). Heat transfer and flow around an elliptic cylinder. International Journal of Heat and Mass Transfer, 27 (10), 1771–1779. doi: 10.1016/0017-9310(84)90159-5
  8. Burkov, V. K., Medvedskii, V. P., Kochegarova, I. Y., Lafaille, Y. I. (2010). Investigation of heat transfer and aerodynamics beams of oval tubes. Thermal Engineering, 3, 42–45.
  9. Ota, T., Aiba, S., Tsuruta, T., Kaga, M. (1983). Forced Convection Heat Transfer from an Elliptic Cylinder of Axis Ratio 1:2. Bulletin of JSM, 26 (212), 262–267. doi: 10.1299/jsme1958.26.262
  10. Kondjoyan, A., Daudin, J. D. (1995). Effects of free stream turbulence intensity on heat and mass transfer at the surface of a circular cylinder and an elliptical cylinder axis ratio 4. International Journal of Heat and Mass Transfer, 38 (10), 1735–1749. doi: 10.1016/0017-9310(94)00338-v
  11. Antufiev, V. M., Beletsky. G. S. (1948). Heat transfer and aerodynamic resistance tubular surfaces in cross flow / convection heating surfaces. Mashgiz, 119.
  12. Brauer, H. M. (1961). Verein Grosskesselbesitzer, 73, 260–276.
  13. Pis’menyi, E. N., Kondratyuk, V. A., Zhukova, Y. V., Terekh, A. M. (2011). Heat transfer of staggered bundles of flat-oval tubes in cross flow. Eastern-European Journal of Enterprise Technologies, 2/8 (50), 4-8. Available at: http://journals.uran.ua/eejet/article/view/1829/1725
  14. Pis’menyi, E. N. (2004). Heat transfer and aerodynamics package cross-finned tubes. Kiev. Alterpres, 244.
  15. Pis’mennyi, E. N., Rogachev, V. A., Baranyuk A. V., Semenyako A. V., Voznyuk M. M. (2014). CFD-modeling of the heat transfer tubes of streamlined forms with incomplete cross fins. International Research Journal, 1 (20), 30–36.

Published

2015-02-23

How to Cite

Кондратюк, В. А., Терех, О. М., Баранюк, О. В., & Письменний, Є. М. (2015). Heat transfer of staggered bundles of flat oval tubes in transverse flow. Eastern-European Journal of Enterprise Technologies, 1(8(73), 43–48. https://doi.org/10.15587/1729-4061.2015.37318

Issue

Section

Energy-saving technologies and equipment