The advantages of using photonic crystal fibers instead of the conventional fibers in optical gyroscope
DOI:
https://doi.org/10.15587/1729-4061.2015.39203Keywords:
fiber optical gyroscope, hollow core photonic crystal fiber, Sagnac effectAbstract
In this paper we proposed to use of a hollow core photonic crystal fiber 1550nmλ , Ø10 µm instead of the conventional fibers in optical gyroscope .Two beams are again propagating through the fiber in opposite directions. Due to the Sagnac effect, the beam travelling against the rotation experiences a slightly shorter path delay than the other beam. The resulting differential phase shift is measured through interferometry, thus translating one component of the angular velocity into a shift of the interference pattern which is measured photometrically. Photonic crystal fibers present special properties and capabilities that lead to an outstanding potential for sensing applications according to these features we can elimination a lot of the problems that exist in the conventional fiber optic gyroscope and getting better and more accurate results in the same conditions when using Photonic Crystal Fibers.
References
- Knight, J. C., Birks, T. A., Russell, P. S. J., Atkin, D. M. (1996). All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 21 (19), 1547–1549. doi: 10.1364/ol.21.001547
- Chau, Y.-F., Liu, C.-Y., Yeh, H.-H., Tsai, D. P. (2010). A comparative study of high birefringence and low confinement loss photonic crystal fiber employing elliptical air holes in fiber cladding with tetragonal lattice. Progress In Electromagnetics Research B, 22, 39–52. doi: 10.2528/pierb10042405
- Ortigosa-Blanch, A., Knight, J. C., Wadsworth, W. J., Arriaga, J., Mangan, B. J., Birks, T. A., Russell, P. S. J. (2000). Highly birefringent photonic crystal fibers. Optics Letters, 25 (18), 1325–1327. doi: 10.1364/ol.25.001325
- Chen, D., Shen, L. (2007). Ultrahigh Birefringent Photonic Crystal Fiber With Ultralow Confinement Loss. IEEE Photonics Technology Letters, 19 (4), 185–187. doi: 10.1109/lpt.2006.890040
- Agrawal, A., Kejalakshmy, N., Chen, J., Rahman, B. M., Grattan, K. T. (2008). Golden spiral photonic crystal fiber: polarization and dispersion properties. Optics Letters, 33 (22), 2716–2718. doi: 10.1364/ol.33.002716
- Yang, S., Zhang, Y., Peng, X., Lu, Y., Xie, S., Li, J., Chen, W., Jiang, Z., Peng, J., Li, H. (2006). Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field. Optics Express, 14 (7), 3015–3023. doi: 10.1364/oe.14.003015
- Ju, J., Jin, W., Demokan, M. S. (2001). Design of single-polarization single mode photonics crystal fibers. J. Lightwave Technol., 24, 825–830.
- Kubota, H., Kawanishi, S., Koyanagi, S., Tanaka, M., Yamaguchi, S. (2004). Absolutely Single Polarization Photonic Crystal Fiber. IEEE Photonics Technology Letters, 16 (1), 182–184. doi: 10.1109/lpt.2003.819415
- Knight, J. C., Skryabin, D. V. (2007). Nonlinear waveguide optics and photonic crystal fibers. Optics Express, 15 (23), 15365–15376. doi: 10.1364/oe.15.015365
- Mortensen, N. A., Nielsen, M. D., Folkenberg, J. R., Petersson, A., Simonsen, H. R. (2003). Improved large-mode-area endlessly single-mode photonic crystal fibers. Optics Letters, 28 (6), 393–395. doi: 10.1364/ol.28.000393
- Folkenberg, J. R., Nielsen, M. D., Mortensen, N. A., Jakobsen, C., Simonsen, H. R. (2004). Polarization maintaining large mode area photonic crystal fiber. Optics Express, 12 (5), 956–960. doi: 10.1364/opex.12.000956
- Dobb, H., Kalli, K., Webb, D. J. (2004). Temperature-insensitive long period grating sensors in photonic crystal fibre. Electronics Letters, 40 (11), 657–658. doi: 10.1049/el:20040433
- Dong, X., Tam, H. Y., Shum, P. (2007). Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer. Applied Physics Letters, 90 (15), 151113. doi: 10.1063/1.2722058
- Wadsworth, W. J., Knight, J. C., Reeves, W. H., Russell, P. S. J., Arriaga, J. (2000). Yb3+-doped photonic crystal fibre laser. Electronics Letters, 36 (17), 1452–1453. doi: 10.1049/el:20000942
- Chen, D. (2007). Stable multi-wavelength erbium-doped fiber laser based on a photonic crystal fiber Sagnac loop filter. Laser Physics Letters, 4 (6), 437–439. doi: 10.1002/lapl.200710003
- Broderick, N. G. R., Monro, T. M., Bennett, P. J., Richardson, D. J. (1999). Nonlinearity in holey optical fibers: measurement and future opportunities. Optics Letters, 24 (20), 1395–1397. doi: 10.1364/ol.24.001395
- Dudley, J. M., Taylor, J. R. (2009). Ten years of nonlinear optics in photonic crystal fibre. Nature Photon, 3 (2), 85–90. doi: 10.1038/nphoton.2008.285
- Overview of Fiber Optic Sensors. Available at: http://www.bluerr.com/images/ Overview_of_FOS2.pdf (Last accessed: 8.02.2012).
- Yablonovitch, E., Gmitter, T., Leung, K. (1991). Photonic band structure: The face-centered-cubic case employing nonspherical atoms. Physical Review Letters, 67 (17), 2295–2298. doi: 10.1103/physrevlett.67.2295
- Birks, T. A., Atkin, D. M., Shepherd, T. J., Russell, P. S. J., Roberts, P. J. (1995). Full 2-D photonic bandgaps in silica/air structures. Electronics Letters, 31 (22), 1941–1943. doi: 10.1049/el:19951306
- Knight, J. C., Birks, T. A., Russell, P. S. J., Atkin, D. M. (1996). All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 21 (19), 1547–1549. doi: 10.1364/ol.21.001547
- Ho, H. L., Hoo, Y. L., Jin, W., Ju, J., Wang, D. N., Windeler, R. S., Li, Q. (2007). Optimizing microstructured optical fibers for evanescent wave gas sensing. Sensors and Actuators B: Chemical, 122 (1), 289–294. doi: 10.1016/j.snb.2006.05.036
- Bock, W. J., Chen, J., Eftimov, T., Urbanczyk, W. (2006). A Photonic Crystal Fiber Sensor for Pressure Measurements. IEEE Transactions on Instrumentation and Measurement, 55 (4), 1119–1123. doi: 10.1109/tim.2006.876591
- Andronova, I. A., Malykin, G. B. (2002). Physical problems of fiber gyroscopy based on the Sagnac effect. Physics-Uspekhi, 45 (8), 793–817. doi: 10.1070/pu2002v045n08abeh001073
- Shinde, Y. S., Kaur Gahir, H. (2008). Dynamic Pressure Sensing Study Using Photonic Crystal Fiber: Application to Tsunami Sensing. IEEE Photonics Technology Letters, 20 (4), 279–281. doi: 10.1109/lpt.2007.913741
- Russell, P. (2003). Photonic crystal fibers. Science, 299 (2605), 358–362. doi: 10.1126/science.1079280
- Mangan, B. J., Farr, L., Langford, A., Roberts, P. J., Williams, D. P., Couny, F., Lawman, M., Mason, M., Coupland, S., Flea, R., Sabert, H., Birks, T. A., Knight, J. C., Russell, P. (2004). Low loss (1.7 dB/km) hollow core photonic bandgap fiber. in Proc. Opt. Fiber. Commun. Conf.
- Kumar, V. V. R., George, A., Reeves, W., Knight, J., Russell, P., Omenetto, F., Taylor, A. (2002). Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Optics Express, 10 (25), 1520. doi: 10.1364/oe.10.001520
- Ebendorff-Heidepriem, H., Warren-Smith, S. C., Monro, T. M. (2009). Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores. Optics Express, 17 (4), 2646. doi: 10.1364/oe.17.002646
- Cregan, R. F., Mangan, B. J., Knight, J. C., Birks, T. A., Russell, P., Roberts, P. J., Allan, D. C. (1999). Singlemode photonic band gap guidance of light in air. Science, 285 (5433), 1537–1539 doi: 10.1126/science.285.5433.1537
- Payne, F. P., Lacey, J. P. R. (1994). A theoretical analysis of scattering loss from planar optical waveguides. Optical and Quantum Electronics. 26 (10), 977–986. doi: 10.1007/bf00708339
- Miya, T., Terunuma, Y., Hosaka, T., Miyashita, T. Ultimate low-loss single-mode fibre at 1.55 μm. Electronics Letters, 15 (4), 106–108 (1979) doi: 10.1049/el:19790077
- Nagayama, K., Kakui, M., Matsui, M., Saitoh, I., Chigusa, Y. (2002). Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance. Electronics Letters, 38 (20), 1168–1169. doi: 10.1049/el:20020824
- Ohashi, M., Shiraki, K., Tajima, K. (1992). Optical loss property of silica-based single-mode fibers. Journal of Lightwave Technology. 10 (5), 539–543. doi: 10.1109/50.136085
- Sanders, G. A., Strandjord, L. K., Qiu, T. (2006). Hollow Core Fiber Optic Ring Resonator for Rotation Sensing. Optical Fiber Sensors, OSA Technical Digest (Optical Society of America). doi: 10.1364/ofs.2006.me6
- Jiang, X., Euser, T. G., Abdolvand, A., Babic, F., Tani, F., Joly, N. Y., Travers, J. C., Russell, P. S. J. (2011). Single-mode hollow-core photonic crystal fiber made from soft glass. Optics Express, 19 (16), 15438–15444. doi: 10.1364/oe.19.015438
- Jha, R., Villatoro, J., Badenes, G. (2008). Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing. Applied Physics Letters, 93 (19), 191106:1–191106:3. doi: 10.1063/1.3025576
- Jha, R., Villatoro, J., Badenes, G., Pruneri, V. (2009). Refractometry based on a photonic crystal fiber interferometer. Optics Letters, 34 (5), 617–619. doi: 10.1364/ol.34.000617
- Cárdenas-Sevilla, G. A., Finazzi, V., Villatoro, J., Pruneri, V. (2011). Photonic crystal fiber sensor array based on modes overlapping. Optics Express, 19 (8), 7596–7602. doi: 10.1364/oe.19.007596
- Zhang, Y., Li, Y., Wei, T., Lan, X., Huang, Y., Chen, G., Xiao, H. (2010). Fringe visibility enhanced extrinsic Fabry-Perot interferometer using a graded index fiber collimator. IEEE Photonics Journal, 2 (3), 469–481. doi: 10.1109/jphot.2010.2049833
- Tuchin, V. V., Skibina, Ju. S., Beloglazov V. I. et. al. (2008). Sensornye svojstva fotonno-kristallicheskogo volnovoda s poloj serdcevinoj. Pis'ma v ZhTF, 34 (15), 63–69.
- Russell, P. J. (2006). Photonic-Cristal Fibers. Journal of Lightwave technology, 24 (12), 4729–4749.
- Fedotov, A. B., Kononov, S. O., Koletovatova, O. A. et. al. (2003). Volnovodnye svojstva i spektr sobstvennyh mod polyh fotonno-kristallicheskih volokon. Kvantovaja jelektronika, 33 (3), 271–274.
- Chen, W. (2010). Ring-core photonic crystal fiber interferometer for strain measurement. Optical Engineering, 49 (9), 094402. doi: 10.1117/1.3488045
- Mogilevtsev, D., Birks, T. A., Russell, P. S. J. (1999). Localized function method for modeling defect modes in 2-D photonic crystals. Journal of Lightwave Technology, 17 (11), 2078–2081. doi: 10.1109/50.802997
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Haider Ali Muse
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.