Investigation of corrosion resistance welds metal hose made of steels AISI 304 and AISI 316

Authors

  • Наталя Аркадіївна Солідор Pryazovskyi state technical university (PSTU) Universytets’ka 7, Mariupol, Donetsk region, Ukraine, 87500, Ukraine https://orcid.org/0000-0002-3861-7933
  • Віталій Петрович Іванов Pryazovskyi state technical university (PSTU) Universytets’ka 7, Mariupol, Donetsk region, Ukraine, 87500, Ukraine https://orcid.org/0000-0003-3339-7633
  • Федiр Вiкторович Моргай Pryazovskyi state technical university (PSTU) Universytets’ka 7, Mariupol, Donetsk region, Ukraine, 87500, Ukraine https://orcid.org/0000-0002-5964-3276
  • Борис Іванович Носовський Pryazovskyi state technical university (PSTU) Universytets’ka 7, Mariupol, Donetsk region, Ukraine, 87500, Ukraine https://orcid.org/0000-0001-7829-5783

DOI:

https://doi.org/10.15587/1729-4061.2015.47035

Keywords:

welded steel flexible hoses, corrosion resistance, pitting, deformation, macrostructure, austenite, heat treatment

Abstract

Despite a large number of available data regarding the causes of damage of steel structures made of stainless steel of AISI 304 and AISI 316 grades, little attention has been paid to the manufacturing and storage conditions of these steel grades, but these conditions may be additional factors promoting pitting corrosion and other types of local corrosion. The article describes the results of researches aiming to increase corrosion resistance of welded steel flexible hoses for transportation of natural gas made of austenite steel. The research determined the controversial influence of the deformation degree on the tendency to corrosion failure of stainless steel; showed the efficiency of heat treatment of AISI 304 and AISI 316 steels to relieve internal stresses in order to increase their corrosion resistance. As a result, in order to reduce propensity for corrosion cracking (pitting) of welded steel flexible hoses is recommended to perform the heat treatment for stress relief at a temperature of 200 °C for 60 minutes. The suggested technology may be used at various enterprises. The results showed in the article may be useful for the specialists engaged in increasing the life of welded steel structures.

Author Biographies

Наталя Аркадіївна Солідор, Pryazovskyi state technical university (PSTU) Universytets’ka 7, Mariupol, Donetsk region, Ukraine, 87500

Associate professor, Candidate of science (Engineering), Ph.D.

The department «Materials» 

Віталій Петрович Іванов, Pryazovskyi state technical university (PSTU) Universytets’ka 7, Mariupol, Donetsk region, Ukraine, 87500

Associate professor, Candidate of science (Engineering), Ph.D.

The department «Equipment and technology of welding production»

Федiр Вiкторович Моргай, Pryazovskyi state technical university (PSTU) Universytets’ka 7, Mariupol, Donetsk region, Ukraine, 87500

PhD student

The department «Equipment and technology of welding production»

Борис Іванович Носовський, Pryazovskyi state technical university (PSTU) Universytets’ka 7, Mariupol, Donetsk region, Ukraine, 87500

Associate professor, Candidate of science (Engineering), Ph.D.

The department «Equipment and technology of welding production»

References

  1. Ziemniak, S. E., Hanson, M. (2002, October). Corrosion behavior of 304 stainless steel in high temperature, hydrogenated water. Corrosion Science, Vol. 44, № 10, 2209–2230. doi:10.1016/s0010-938x(02)00004-5
  2. Zhang, Q., Wang, R., Kato, M., Nakasa, K. (2005, February). Observation by atomic force microscope of corrosion product during pitting corrosion on SUS304 stainless steel. Scripta Materialia, Vol. 52, № 3, 227–230. doi:10.1016/j.scriptamat.2004.09.024
  3. García, C., Martín, F., de Tiedra, P., Cambronero, L. G. (2007, April). Pitting corrosion behaviour of PM austenitic stainless steels sintered in nitrogen–hydrogen atmosphere. Corrosion Science, Vol. 49, № 4, 1718–1736. doi:10.1016/j.corsci.2006.10.009
  4. Tsutsumi, Y., Nishikata, A., Tsuru, T. (2007, March). Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solutions. Corrosion Science, Vol. 49, № 3, 1394–1407. doi:10.1016/j.corsci.2006.08.016
  5. Abreu, C. M., Cristóbal, M. J., Losada, R., Nóvoa, X. R., Pena, G., Pérez, M. C. (2006, January). Long-term behaviour of AISI 304L passive layer in chloride containing medium. Electrochimica Acta, Vol. 51, № 8-9, 1881–1890. doi:10.1016/j.electacta.2005.06.040
  6. Wang, R. (2008, February). Influence of ultrasound on pitting corrosion and crevice corrosion of SUS304 stainless steel in chloride sodium aqueous solution. Corrosion Science, Vol. 50, № 2, 325–328. doi:10.1016/j.corsci.2007.11.001
  7. Lü, G., Cheng, H., Xu, C., He, Z. (2008, April). Effect of Strain and Chloride Concentration on Pitting Susceptibility for Type 304 Austenitic Stainless Steel. Chinese Journal of Chemical Engineering, Vol. 16, № 2, 314–319. doi:10.1016/s1004-9541(08)60080-4
  8. Steklov, О. I. (1976). Prochnost svarnih konstrukcyi v agressivnih sredah. М.: Мashinostroenie, 200.
  9. Аlimov, V. І., Duryagina, Z. A. (2012). Koroziya ta zahist metaliv vid korozii. Donetsk–Lviv.: ТОV «Shidniy vidavnichiy dim», 328.
  10. Novikov, I. I. (1975). Defekti kristallicheskogo stroeniya metallov. М.: Меtallurgiya, 208.

Published

2015-08-22

How to Cite

Солідор, Н. А., Іванов, В. П., Моргай, Ф. В., & Носовський, Б. І. (2015). Investigation of corrosion resistance welds metal hose made of steels AISI 304 and AISI 316. Eastern-European Journal of Enterprise Technologies, 4(5(76), 33–39. https://doi.org/10.15587/1729-4061.2015.47035