Regarding the efficiency of complex steel killing

Authors

  • Віктор Олегович Шульга Zaporozhye State Engineering Academy Lenina, 226, Zaporozhye, Ukraine, 69006, Ukraine
  • Іван Федорович Червоний Zaporozhye State Engineering Academy Lenina, 226, Zaporozhye, Ukraine, 69006, Ukraine
  • Сергій Геннадійович Єгоров Zaporozhye State Engineering Academy Lenina, 226, Zaporozhye, Ukraine, 69006, Ukraine
  • Володимир Петрович Грицай Zaporozhye State Engineering Academy Lenina, 226, Zaporozhye, Ukraine, 69006, Ukraine
  • Олег Ігоревич Козачків Zaporozhye State Engineering Academy Lenina, 226, Zaporozhye, Ukraine, 69006, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2012.5575

Keywords:

Steel, killing, physicochemical analysis, oxygen, affinity with oxygen, equilibrium of chemical reactions

Abstract

The article provides the results of the thermodynamic analysis of steel killing. The use of metal-based deoxidizers taking into consideration their affinity with oxygen provides the removal of oxygen. To test the possibility of the efficiency increase of killing the physicochemical analysis of combinations of metals and their interactions with the dissolved oxygen was performed.

The removal of oxygen from the melt progresses more intensively due to the complex deoxidizers based on calcium, titanium, silicon, aluminum and vanadium. The complex deoxidizers based on aluminum with silicon and barium are quite effective. At the same time, there exists a possibility to increase the efficiency of the complex based on the metal with a weaker affinity with oxygen with metals with a high affinity with oxygen.

The article suggests the explanation of the results based on a model that takes into account the establishment of equilibrium of reactions between metal-deoxidizer and dissolved oxygen. When applying to the melt as the first, weaker metal-deoxidized, the interaction with the dissolved oxygen in the melt and the formation of the corresponding oxide take place. The next portion of the second metal-deoxidizer also achieves the equilibrium state, and then the excess amount of the second metal-deoxidizer also becomes the alloying element. But it entails more intensive melt killing with output of oxides on the surface of the melt in the form of slag. The use of third and fourth metals in complex deoxidizer on the basis of suggested model increases the efficiency of the killing, improves its kinetics and reduces the number of nonmetal impurities

Author Biographies

Віктор Олегович Шульга, Zaporozhye State Engineering Academy Lenina, 226, Zaporozhye, Ukraine, 69006

Graduate

Department of nonferrous metals

Іван Федорович Червоний, Zaporozhye State Engineering Academy Lenina, 226, Zaporozhye, Ukraine, 69006

Doctor of Technical Sciences, Professor, Head of Department

Department of nonferrous metals

Сергій Геннадійович Єгоров, Zaporozhye State Engineering Academy Lenina, 226, Zaporozhye, Ukraine, 69006

PhD, Associate Professor

Department of nonferrous metals

Володимир Петрович Грицай, Zaporozhye State Engineering Academy Lenina, 226, Zaporozhye, Ukraine, 69006

Ph.D., Senior Scientist, Head kafed Roy

Department of mechanical metallurgical enterprises

Олег Ігоревич Козачків, Zaporozhye State Engineering Academy Lenina, 226, Zaporozhye, Ukraine, 69006

PhD, Associate Professor

Department of Metallurgy of ferrous metals

References

  1. Явойский, А. В. Научные основы современных сталеплавильных про-цессов [Текст] / А. В. Явойский, П.С. Харлашин, Т.М. Чаудри. – Мариуполь, 2003 – 276 с. – Библиогр. с. 272-289. – 300 экз.
  2. Химическое сродство элементов к кислороду [Электронный ресурс]. – Украинская Ассоциация Сталеплавильщиков. Информационный портал о черной и цветной металлургии. – Режим выборки:
  3. http://uas.su/glossary/eng/C/chemicalaffinity.php. - 10.10.2012.
  4. Шульга В. О. Физико-химический анализ процесса раскисления стали [Текст] / В. О. Шульга, И. Ф. Червоный, С. Г. Егоров, В. П. Грицай // Металлургия : наукові праці ЗДІА. – Запоріжжя : ЗДІА, 2012. – Вип. 3 (28). – С. 38-42. – Бібліогр. с. 42.
  5. Зборщик, О. М. Фізико-хімічні процеси позаагрегатного рафінування металлу [Текст] : Навчальний посібник / О. М. Зборщик – Донецьк: ДонНТУ, 2001. – 154 с. – Библиогр. с. 149. – 150 экз. – ISBN 966-7559-56-4.
  6. Кнюппель Г. Раскисление и вакуумная обработка стали. Часть I. Термодинамические и кинетические закономерности [Текст] : Пер. с нем. Г. Н. Еланского. – М.: Металлургия, 1973. – 312 с. – Библиогр. с. 305-311. – 2200 экз.
  7. Аменова А. А., Качественные показатели стали RR St 37-2 раскисленной комплексным ферросплавом ферросиликоалюмобарием [Электронный ресурс] / А. А. Аменова, А. Х. Нурумгалиев, Д. У. Смагулов // Режим выборки: http://vestnik.kazntu.kz/files/newspapers/46/1324/1324.pdf. – 22.11.2012.
  8. Казачков, Е. А. Комплексное раскисление стали алюминием и кальцием [Электронный ресурс] / Е. А. Казачков, Л. Е. Бойчук // Вісник приазовського державного технічного університету. Серія: Технічні науки. – Вип. № 20. – 2010. – С. 11-14. – Библиогр.: с. 14.
  9. Pat. US5868875 United States. Int. CI.6 C21D 8/02; C22C 38/28. Non-ridging ferritic chromium alloyed steel and method of making [Электронный ресурс] / Eizo Yoshitakc, Alan R. McKague. – Date of Patent: Feb. 9, 1999. – Режим выборки: http://www.google.com.ua/patents/US5868875. – 20.11.2012.
  10. Pat. US6511553 United States. Int. Cl7 C22C 3S/06; C22C 38/14. Steel for steel excellent in workability and method of deoxidizing same [Электронный ресурс] / Junji Nakashima, Takashi Sawal, Mitsuo Uchimura, Wataru Yamada, Shigenori Tanaka, Yasuharu Sakuma, Akinobu Murasato. – Date of Patent: Jan. 28, 2003. – Режим выборки: http://www.google.ru/patents/US6511553. – 20.11.2012.

Published

2012-12-13

How to Cite

Шульга, В. О., Червоний, І. Ф., Єгоров, С. Г., Грицай, В. П., & Козачків, О. І. (2012). Regarding the efficiency of complex steel killing. Eastern-European Journal of Enterprise Technologies, 6(1(60), 33–37. https://doi.org/10.15587/1729-4061.2012.5575

Issue

Section

Mechanical engineering technology