Optimization of packing polyhedra in spherical and cylindrical containers

Authors

  • Александр Викторович Панкратов A. N. Podgorny Institute for Mechanical Engineering Problems NAS of Ukraine Dm. Pozharsky 2/10, Kharkiv, 61046, Ukraine https://orcid.org/0000-0002-2958-8923
  • Татьяна Евгеньевна Романова A. N. Podgorny Institute for Mechanical Engineering Problems NAS of Ukraine 2/10 Dm. Pozharsky str., Kharkiv, Ukraine, 61046, Ukraine https://orcid.org/0000-0002-8618-4917
  • Андрей Михайлович Чугай Podgorny Institute for Mechanical engineering problems NAS of Ukraine 2/10 Pozharsky str., Kharkiv, Ukraine, 61046, Ukraine https://orcid.org/0000-0002-4079-5632
  • Юрий Евгеньевич Стоян Podgorny Institute for Mechanical engineering problems NAS of Ukraine 2/10 Pozharsky str., Kharkiv, Ukraine, 61046, Ukraine https://orcid.org/0000-0001-5234-3986

DOI:

https://doi.org/10.15587/1729-4061.2016.60847

Keywords:

packaging, polyhedra, continuous turns, quasi-phi-function, mathematical model, nonlinear optimization

Abstract

The study focuses on the problem of packing a given set of arbitrary polyhedra allowing continuous rotation in a container of a minimum size (a sphere with a minimum radius or a cylinder with a minimum coefficient of homothety). Non-overlapping and containment constraints are described by means of radical-free quasi-phi-functions. This allows building a mathematical model as a nonlinear programming problem with a domain of feasible solutions that is described as a system of inequalities with smooth functions. The proposed solution strategy includes a fast algorithm for generating valid starting points and the COMPOLY-S optimization procedure that reduces the nonlinear programming problem with a large number of variables and a large number of inequalities to a sequence of smaller tasks and fewer non-linear inequalities. The COMPOLY-S procedure significantly reduces the computational cost (time and memory) and allows an efficient use of modern local and global NLP-solvers, such as IPOPT, Baron, LindoGlobal and GloMIQO, for solving nonlinear programming problems.

Author Biographies

Александр Викторович Панкратов, A. N. Podgorny Institute for Mechanical Engineering Problems NAS of Ukraine Dm. Pozharsky 2/10, Kharkiv, 61046

Doctor of Technics, senior scientist

Department for Mathematical Modeling

Татьяна Евгеньевна Романова, A. N. Podgorny Institute for Mechanical Engineering Problems NAS of Ukraine 2/10 Dm. Pozharsky str., Kharkiv, Ukraine, 61046

Doctor of Technics, professor, senior scientist

Department for Mathematical Modeling

Андрей Михайлович Чугай, Podgorny Institute for Mechanical engineering problems NAS of Ukraine 2/10 Pozharsky str., Kharkiv, Ukraine, 61046

PhD, senior science

Department of mathematical modeling and computational methods 

Юрий Евгеньевич Стоян, Podgorny Institute for Mechanical engineering problems NAS of Ukraine 2/10 Pozharsky str., Kharkiv, Ukraine, 61046

Postgraduate student

Department of mathematical modeling and computational methods 

References

  1. Wäscher, G., Haußner, H., Schumann, H. (2007). An improved typology of cutting and packing problems. European Journal of Operational Research, 183 (3), 1109–1130. doi: 10.1016/j.ejor.2005.12.047
  2. Chazelle, B., Edelsbrunner, H., Guibas, L. J. (1989). The complexity of cutting complexes. Discrete & Computational Geometry, 4 (2), 139–181. doi: 10.1007/bf02187720
  3. Cagan, J., Shimada, K., Yin, S. (2002). A survey of computational approaches to three-dimensional layout problems. Computer-Aided Design, 34 (8), 597–611. doi: 10.1016/s0010-4485(01)00109-9
  4. Sriramya, P., Varthini, P. B. (2012). A State-of-the-Art Review of Bin Packing Techniques. Eur. J. Scien. Res., 86 (3), 360–364.
  5. Gan, M., Gopinathan, N., Jia, X., Williams, R. A. (2004). Predicting Packing Characteristics of Particles of Arbitrary Shapes. KONA Powder and Particle Journal, 22, 82–93. doi: 10.14356/kona.2004012
  6. Jia, X., Gan, M., Williams, R. A., Rhodes, D. (2007). Validation of a digital packing algorithm in predicting powder packing densities. Powder Technology, 174 (1-2), 10–13. doi: 10.1016/j.powtec.2006.10.013
  7. De Korte, A. C. J., Brouwers, H. J. H. (2013). Random packing of digitized particles. Powder Technology, 233, 319–324. doi: 10.1016/j.powtec.2012.09.015
  8. Li, S. X., Zhao, J. (2009). Sphere assembly model and relaxation algorithm for packing of non-spherical particles. Chin. J. Comp. Phys., 26 (3), 167–173.
  9. Li, S., Zhao, J., Lu, P., Xie, Y. (2010). Maximum packing densities of basic 3D objects. Chinese Science Bulletin, 55 (2), 114–119. doi: 10.1007/s11434-009-0650-0
  10. Aladahalli, C., Cagan, J., Shimada, K. (2007). Objective Function Effect Based Pattern Search—Theoretical Framework Inspired by 3D Component Layout. Journal of Mechanical Design, 129 (3), 243–254. doi: 10.1115/1.2406095
  11. Egeblad, J., Nielsen, B. K., Odgaard, A. (2007). Fast neighborhood search for two- and three-dimensional nesting problems. European Journal of Operational Research, 183 (3), 1249–1266. doi: 10.1016/j.ejor.2005.11.063
  12. Fasano, G. (2007). MIP-based heuristic for non-standard 3D-packing problems. 4OR, 6 (3), 291–310. doi: 10.1007/s10288-007-0049-1
  13. Liu, X., Liu, J.-M., Cao, A.-X., Yao, Z.-L. (2015). HAPE3D – a new constructive algorithm for the 3D irregular packing problem. Frontiers of Information Technology & Electronic Engineering, 16 (5), 380–390. doi: 10.1631/fitee.1400421
  14. Egeblad, J., Nielsen, B. K., Brazil, M. (2009). Translational packing of arbitrary polytopes. Computational Geometry, 42 (4), 269–288. doi: 10.1016/j.comgeo.2008.06.003
  15. Fasano, G. (2012). A global optimization point of view to handle non-standard object packing problems. Journal of Global Optimization, 55 (2), 279–299. doi: 10.1007/s10898-012-9865-8
  16. Stoyan, Y. G., Gil, N. I., Pankratov, A. et al. (2004). Packing Non-Сonvex Polytopes into a Parallelepiped. Technische Universitat Dresden. Available at: http://www.math.tu-dresden.de/~scheith/ABSTRACTS/PREPRINTS/04-non-conv.pdf
  17. Chernov, N., Stoyan, Y., Romanova, T. (2010). Mathematical model and efficient algorithms for object packing problem. Computational Geometry, 43 (5), 535–553. doi: 10.1016/j.comgeo.2009.12.003
  18. Stoyan, Y. G., Chugay, A. M. (2012). Mathematical modeling of the interaction of non-oriented convex polytopes. Cybernetics and Systems Analysis, 48 (6), 837–845. doi: 10.1007/s10559-012-9463-2
  19. Stoyan, Yu., Chugay, A. (2011). Construction of radical free phi-functions for spheres and non-oriented polytopes. Rep. of NAS of Ukraine, 12, 35–40.
  20. Stoyan, Y., Pankratov, A., Romanova, T. (2015). Quasi-phi-functions and optimal packing of ellipses. Journal of Global Optimization, 1–25. doi: 10.1007/s10898-015-0331-2
  21. Fischer, K., Gärtner, B., Kutz, M. (2003). Fast Smallest-Enclosing-Ball Computation in High Dimensions. Proc. 11th European Symposium on Algorithms (ESA), 630–641. doi: 10.1007/978-3-540-39658-1_57
  22. Belov, G. (2002). A Modified Algorithm for Convex Decomposition of 3D Polyhedra,” Technical report MATH-NM-03-2002, Institut für Numerische Mathematik, Technische Universität, Dresden. Available at: http://www.math.tudresden.de/~belov/cd3/cd3.ps
  23. Wächter, A., Biegler, L. T. (2005). On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, 106 (1), 25–57. doi: 10.1007/s10107-004-0559-y

Published

2016-02-27

How to Cite

Панкратов, А. В., Романова, Т. Е., Чугай, А. М., & Стоян, Ю. Е. (2016). Optimization of packing polyhedra in spherical and cylindrical containers. Eastern-European Journal of Enterprise Technologies, 1(4(79), 39–47. https://doi.org/10.15587/1729-4061.2016.60847

Issue

Section

Mathematics and Cybernetics - applied aspects