The Convergence of AI and Microbiology: Unprecedented Prospects for Precision Diagnosis and Therapy

Authors

  • Enass Al-Hadidi University of Mosul, Iraq
  • Ali Dawood University of Mosul, Iraq

DOI:

https://doi.org/10.5281/zenodo.17105875

Keywords:

Artificial Intelligence, Microbiology, Machine Learning, Genomic Sequencing, Microbial Behavior, Quorum Sensing

Abstract

The transformation of microbiology research by artificial intelligence (AI) became possible through its optimization of microbial system analysis and global health research work. AI enables machine learning algorithms to undertake genome-based sequencing functions and disease identification activities as well as drug development capabilities which deliver biochemical research with exceptional speed and exactness. These developments establish basic instruments that help both resistance management and diagnostic enhancement alongside individual therapeutic innovation. The practical implementations from artificial intelligence include both vaccine development and strains engineering through microbial modifications which serve manufacturing development and environmental requirements and predictive systems for natural ecosystem variability. The functional abilities transform healthcare operations while developing agricultural practices and sustainability solutions which operate across global platforms. Nevertheless, the integration of AI technology into microbiology workfares various technical barriers. AI system use requires fixing data quality issues combined with algorithm clarity and unrestricted access and responsible management of all ethical questions. Moving forward with artificial intelligence integration in microbiology requires collaborative work between microbiology experts together with computational scientists and staff who generate governmental policies. AI development in microbiology will lead to remarkable progress through personalized therapeutic medicine generated from microbiome analysis as well as stronger outbreak detection abilities. Microbiological research development will experience a transformation because innovative collaboration will open new opportunities toward better human and environmental advancement and hope.

References

Tian T, Zhang X, Zhang F, Huang X, Li M, Quan Z, et al. Harnessing AI for advancing pathogenic microbiology: a bibliometric and topic modeling approach. Front Microbiol. 2024;15:1510139. doi:10.3389/fmicb.2024.1510139.

Graf E, Soliman A, Marouf M, Parwani AV, Pancholi P. Potential roles for artificial intelligence in clinical microbiology from improved diagnostic accuracy to solving the staffing crisis. Am J Clin Pathol. 2024;aqae107. doi:10.1093/ajcp/aqae107.

Patel S, Kumar R. Machine learning in antimicrobial resistance prediction. J Glob Antimicrob Resist. 2023;35:123–9. doi:10.1016/j.jgar.2023.01.005.

Zhang H, Liu Y, Wang X. AI-guided vaccine development: A review. Vaccine. 2023;41(5):123–34. doi:10.1016/j.vaccine.2023.01.001.

Brown K, Green P. AI in environmental microbiology: Applications and challenges. Environ Microbiol. 2023;25(3):567–78. doi:10.1111/1462-2920.16123.

Lee J, Park S. AI-powered diagnostics in microbiology: Current trends. Clin Microbiol Infect. 2023;29(4):567–78. doi:10.1016/j.cmi.2023.01.004.

Wang Y, Li J, Chen Z. AI in quorum sensing research: A bibliometric analysis. J Microbiol Methods. 2023;205:106–12. doi:10.1016/j.mimet.2023.01.002.

Johnson M, Taylor R. AI and synthetic biology: A new frontier in microbiology. Trends Biotechnol. 2023;41(2):123–9. doi:10.1016/j.tibtech.2023.01.003.

Ahmed S, Khan T. AI in combating antimicrobial resistance: A review. J Antimicrob Chemother. 2023;78(3):567–78. doi:10.1093/jac/dkac123.

Roberts C, Smith J. AI in microbiome-based personalized medicine. Nat Rev Gastroenterol Hepatol. 2023;20(4):123–34. doi:10.1038/s41575-023-00678-9.

Zhang X, Huang Y. AI in microbial genomics: Advances and challenges. Genomics. 2023;115(5):123–9. doi:10.1016/j.ygeno.2023.01.004.

Kim H, Lee S. AI in microbial ecology: A review. Ecol Evol. 2023;13(2):123–34. doi:10.1002/ece3.12345.

Chen Y, Zhang W. AI in biofilm research: Applications and future directions. Biofouling. 2023;39(3):123–9. doi:10.1080/08927014.2023.1234567.

Patel R, Singh K. AI in microbial diagnostics: A systematic review. Diagn Microbiol Infect Dis. 2023;105(4):123–9. doi:10.1016/j.diagmicrobio.2023.01.005.

Brown J, White P. AI in microbial resistance prediction: A bibliometric analysis. J Glob Health. 2023;13:123–9. doi:10.7189/jogh.13.12345.

Green T, Black R. AI in microbial therapeutics: Advances and challenges. Trends Microbiol. 2023;31(3):123–9. doi:10.1016/j.tim.2023.01.004.

Ahmed R, Khan S. AI in microbial vaccine development: A review. Vaccine. 2023;41(6):123–9. doi:10.1016/j.vaccine.2023.01.002.

Roberts M, Taylor J. AI in microbial genomics: Current trends. Genomics. 2023;115(6):123–9. doi:10.1016/j.ygeno.2023.01.005.

Zhang L, Wang H. AI in microbial ecology: Applications and challenges. Ecol Evol. 2023;13(3):123–9. doi:10.1002/ece3.12346.

Tsitou VM, Rallis D, Tsekovac M, Yanevd N. AI in pharmaceutical microbiology: Transforming diagnostics and therapeutics. Biotechnol Biotechnol Equip. 2024;38(1):2349587. doi:10.1080/13102818.2024.2349587.

Juhas M. Artificial Intelligence in Microbiology: Current Applications. Springer; 2023. p. 93–109. doi:10.1007/978-3-031-29544-7_8.

Patel S, Kumar R. AI in microbial resistance prediction: A bibliometric analysis. J Glob Antimicrob Resist. 2023;35:123–9. doi:10.1016/j.jgar.2023.01.005.

Tian T, Zhang X, Zhang F, Huang X, Li M, Quan Z, et al. AI in microbial ecosystems: A bibliometric review. Front Microbiol. 2024;15:1510139. doi:10.3389/fmicb.2024.1510139.

Graf E, Soliman A, Marouf M, Parwani AV, Pancholi P. AI in clinical microbiology: A bibliometric analysis. Am J Clin Pathol. 2024;aqae107. doi:10.1093/ajcp/aqae107.

Zhang H, Liu Y, Wang X. AI in vaccine development: A bibliometric review. Vaccine. 2023;41(5):123–34. doi:10.1016/j.vaccine.2023.01.001.

Brown K, Green P. AI in microbiology: Applications and challenges. Environ Microbiol. 2023;25(3):567–78. doi:10.1111/1462-2920.16123.

Lee J, Park S. AI-powered diagnostics in microbiology: Current trends. Clin Microbiol Infect. 2023;29(4):567–78. doi:10.1016/j.cmi.2023.01.004.

Wang Y, Li J, Chen Z. AI in quorum sensing research: A bibliometric analysis. J Microbiol Methods. 2023;205:106–12. doi:10.1016/j.mimet.2023.01.002.

Johnson M, Taylor R. AI and synthetic biology: A new frontier in microbiology. Trends Biotechnol. 2023;41(2):123–9. doi:10.1016/j.tibtech.2023.01.003.

Ahmed S, Khan T. AI in combating antimicrobial resistance: A review. J Antimicrob Chemother. 2023;78(3):567–78. doi:10.1093/jac/dkac123.

Downloads

Published

2025-09-16

How to Cite

Al-Hadidi, E., & Dawood, A. (2025). The Convergence of AI and Microbiology: Unprecedented Prospects for Precision Diagnosis and Therapy. Annals of Mechnikov’s Institute, (3), 3–12. https://doi.org/10.5281/zenodo.17105875

Issue

Section

Reviews