Metchnikoff’s scientific ideas and modernity
Ключові слова:
evolution, natural selection, parallel evolution, complexity, parenchymella, phagocytella, gastrula, phagocytes, inflammation, innate immunity, M1 macrophage, M2 macrophage, probiotics, ageing theoryАнотація
On May 15, 2015, we celebrated the 170th anniversary of the Ilya Metchnikoff, the author of the hypothesis about parenchymella, the father of cellular immunology and inflammation theory, founder of gerontology, aging and longevity science. He was at the vanguardof the probiotics use in elderly therapy. In his work “Essaysabout the Origin of Species” Metchnikoff critically reviewed the history of evolution ideas development.He rejected the idea that the struggle for existence occurs primarily among member of the same species and is the starting place of the new species development and complexity. There is still dispute about the mechanisms of speciation about whether evolution is punctuated rather than smoothly gradual about the role of natural selection in the new species creation and generation of life complexity.
Metchnikoff devoted many years to studying the comparative development of the embryonic layers of lower animals. He proved that in their development the lower animals follow a plan similar to that of the higher animals. Ilya Ilyich demonstrated that cnidarians gastrulate by introgression of cells which move from the blastula wall into the interior blastocoel and formed parenchymella or phagocytella. Also he assumed that invagination arose as a secondary mechanism of gastrulation. In the paper we discussed the contemporary views about parenchymella and multicellular animal origin. Metchnikoff is rightly famous for his theories of phagocytosis and inflammation. He proposed that macrophages evolved first to regulate development, and that these function are the stage for their evolution into the cells of innate immunity, He revealed of phagocytic cells functions in clearing infections and inflammation. He described of phagocytosis as an active process and its role in host defence, across a wide range of organisms digestion. It is very importantly that cells and microorganisms were taken up by an active process, involving living, and not only dead organisms. He demonstrated killing by leukocytic enzymes (‘cytase’). The humoral theory claimed that the phagocytes caused the spread of disease in the body and thus would harm the host, rather than defend it, against bacterial invasion. Metchnikoff devoted much of his scientific work to the development and defense of the role of phagocytosis in inflammation. He observed diapedesis through vessel walls, aggregation of leukocytes at sites of inflammation. Phagocytosis not only destructs of infectious microbes including bacteria, spirochaetes and yeasts, but uptake of host cells, e.g. erythrocytes, from diverse species as well. More broadly phagocytes are the cellswhich preserving the integrity and defining the identity of the organism. In the article we summarized the new data and concepts about the development and functions of phagocytes in innate immunity, inflammation, oncogenesis and tissues repair. Metchnikoff believed that the disabilities of old age are the work of phagocytes transformed from defenders against infection into destroyers of tissues by autotoxins derived from putrefactive bacteria residing in the colon. According to his concept, senile degeneration of the nervous system, for example, is the work of macrophages induced by autotoxins cause them to atrophy. Such degenerative changes, he believed were nearly always premature and potentially prevented by procedures directed against the putrefactive bacteria. Metchnikoff hypothesized that diminishing the number of putrefactive bacteria in the gut with probiotics could prolong life. Until recently it was generally assumed that phagocytic removal of neurons occurs only after neuronal death. But now it has been convincingly proved that stressed but viable neurons reversibly exposed the "eat-me" signal leading to their phagocytosis by microglia; this neuronal loss was prevented in the absence of microglia. As a result these data breathe life into the Metchnikoff ageing theory.
Посилання
Kolotova T. Yu. The mechanisms and control of the eucariote genome rearrangements [Text] / T. Yu. Kolotova, B. T. Stegniy, I. Yu. Kuchma, Yu. B. Chaikovski, Yu. L. Volyanskiy – Kharkov: Kollegium, 2004. – 264 р. – ISBN 966-8604-03-2
Kolotova T. Yu. Genome instability and epigenetic inheritance of the eucaryote [Text] / T. Yu. Kolotova, A. Yu. Volyanskiy, I. Yu. Kuchma, B. T. Stegniy, Yu. B. Chaikovski, V. I. Shirobokov, A. I. Bojkov, Yu. L. Volyanskiy – Kharkov: Oko, 2007. – 288 p. – ISBN 966-526-102-9
Jablonka E. Epigenetic Inheritance and Evolution: The Lamarckian Dimension [Text] / E. Jablonka, MJ. Lamb – Oxford: Oxford University Press, 1995. – 360р. – ISBN 0-19-854063-9, ISBN 978-0-19-854063-2, ISBN 978-0-19-854063-2.
Jablonka E. Evolution in four dimensions: Genetic, epigenetic, behavioral, and symbolic variation in the history of life [Text] / E. Jablonka, MJ. Lamb – Cambridge, MA: MIT Press, 2005. – 576р. – ISBN 0-262-10107-6.
Koonin, E. V. Does the central dogma still stand? [Text] / E. V. Koonin // Biol. Direct. – 2012. – V.7. – P.27.
Rechavi, O. Starvation-induced transgenerational inheritance of small RNAs in C. elegans [Text] / O. Rechavi, L. Houri-Ze'evi, S. Anava, W. S. Goh, S. Y. Kerk, G. J. Hannon, O. Hobert // Cell. – 2014. – V.158. – P. 277-287.
Smythies, J. Molecular mechanisms for the inheritance of acquired characteristics-exosomes, microRNA shuttling, fear and stress: Lamarck resurrected? [Text] / J. Smythies, L. Edelstein, V. Ramachandran // Front. Genet. – 2014. – V. 5. – P. 133.
Kolotova T Yu. Procariote genome variability [Text] / T. Yu. Kolotova, A. Yu. Volyanskiy, I. Yu. Kuchma // Saarbrucken Deutschland: «Palmarium Academic Publishing», 2014. – 396р. – ISBN-13: 978-3-659398982-7.
Shapiro, J. A. Physiology of the read-write genome [Text] / J. A. Shapiro // J. Physiol. – 2014. – V. 592. – № 11. – Р. 2319-41.
Li, J. Genomic hypomethylation in the human germline associates with selective structural mutability in the human genome [Text] / J. Li, R. A. Harris, S. W. Cheung, C. Coarfa, M. Jeong // PLoS Genet. – 2012. – V. 8. – Р. 1002692.
Martin, F.L. Epigenetic influences in the aetiology of cancers arising from breast and prostate: a hypothesised transgenerational evolution in chromatin accessibility[Text] / F.L. Martin // ISRN Oncol. – 2013. – V. 2013. – № 624794. – Р.13.
Shapiro, J. A. Epigenetic control of mobile DNA as an interface between experience and genome change [Text] / J. A. Shapiro // Front. Genet. – 2014. – V.5. – P.87.
Coarfa, C. Analysis of interactions between the epigenome and structural mutability of the genome using Genboree Workbench tools [Text] / C. Coarfa, C. Pichot, A. Jackson, A. Tandon, V. Amin, S. Raghuraman, S Paithankar, A. V. Lee, S. E. McGuire, A. Milosavljevic // BMC Bioinformatics. – 2014. – V.15. – № 7. – P. 2.
Gallant, J. R. Nonhuman genetics. Genomic basis for the convergent evolution of electric organs[Text] / J. R. Gallant, L. L. Traeger, J. D. Volkening // Science. – 2014. – V. 344. – P.1522-1525.
Soria-Carrasco, V. Stick insect genomes reveal natural selection's role in parallel speciation [Text] / V. Soria-Carrasco, Z. Gompert, A. A. Comeault, T. E. Farkas, T. L. Parchman, J. S. Johnston, C. A. Buerkle, J. L. Feder, J. Bast, T. Schwander, S. P. Egan, B. J. Crespi, P. Nosil // Science. –2014. – V.344. – P.738-742.
Wang, X. S5 inserts upstream of the master motility operon flhDC in a quasi-Lamarckian way [Text] / X. Wang, T. K. Wood // ISME J. – 2011. – V.9. – P.1517-1525.
Saier, MH Jr. Transposon-mediated directed mutation controlled by DNA binding proteins in Escherichia coli [Text] / M. H. Jr Saier, Z. Zhang // Front. Microbiol. – 2014. – V.5. – P.390.
Metchnikoff E. E. Essay on the Origin of Species [Text] / E. E. Metchnikoff URSS, 2010. – P. 250.
Koonin, E. V. Towards a postmodern synthesis of evolutionary biology [Text] / E. V. Koonin // Cell Cycle. – 2009. – V.8. – P.799-800.
Wolf, Y. I. Genome reduction as the dominant mode of evolution [Text] / Y. I. Wolf, E. V. Koonin // Bioessays. – 2013. – V.9. – P.829-837.
Zmasek, C. M. Strong functional patterns in the evolution of eukaryotic genomes revealed by the reconstruction of ancestral protein domain repertoires [Text] / C. M. Zmasek, A. Godzik // Genome Biol. – 2011. – V.12. – P.R4
Rogozin I. B. Origin and evolution of spliceosomal introns [Text] / I. B. Rogozin, L. Carmel, M. Csuros, E. V. Koonin // Biol. Direct – 2012. – V.7. – P. 11.
Schad, E. The relationship between proteome size, structural disorder and organism complexity [Text] / E. Schad, P. Tompa, H. Hegyi // Genome Biol. – 2011. – V.12. – P.120.
Thurman, R. E. The accessible chromatin landscape of the human genome [Text] / R. E. Thurman // Nature. – 2012. – V.489. – P.75-82.
Djebali, S. Landscape of transcription in human cells [Text] / S. Djebali, C. A. Davis, A. Merkel, A. Dobin, T. Lassmann, A. Mortazavi, A. Tanzer, J. Lagarde, W. Lin, F. Schlesinger // Nature. – 2012. – V. 489. – P.101-108.
Liu, G. A meta-analysis of the genomic and transcriptomic composition of complex life [Text] / G. Liu, J. S. Mattick, R. J. Taft // Cell Cycle. – 2013. – V.12. – P.2061-2072.
Siepel, A. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes[Text] / A. Siepel, G. Bejerano, J. S. Pedersen, A. S. Hinrichs, M. Hou // Genome Res. – 2005. – V. 15. – P. 1034–1050.
v. Baer. Ueber Entwickelungsgeschichte der Thiere [Text] / v. Baer. // Scholion. – 1828. – №V. – Р. 199-232.
Arendt, D. Comparative aspects of gastrulation. Gastrulation. From cells to embryos [Text] / D. Arendt // Cold Spring Harbor Press. – 2004. – P. 679–693.
Nielsen, C. Animal evolution. Interrelationships of the living phyla [Text] / C. Nielsen // Oxford University Press. – 2001. – Р.563.
Price, A. L. The evolution of gastrulation: Cellular and molecular aspects. In Gastrulation. From cells to embryos [Text] / A. L. Price, N. H. Patel // Cold Spring Harbor Press. – 2004. – P. 695–701.
Leys, S. P. Embryogenesis and metamorphosis in a haplosclerid demosponge: Gastrulation and transdifferentiation of larval ciliated cells to choanocytes [Text] / S. P. Leys, B. M. Degnan // Invertebr. Biol. – 2002. – V. 121. – P.171–189.
Leys, S. P. Gastrulation in Calcareous Sponges: In Search of Haeckel's Gastraea [Text] / S. P. Leys, D. Eerkes-Medrano // Integr. Comp. Biol. – 2005. – V.45. – P.342-351.
Moroz, L. L. The ctenophore genome and the evolutionary origins of neural systems [Text] / L. L. Moroz // Nature. – 2014. – V.510. – P.109-114.
Moroz, L. L. Convergent evolution of neural systems in ctenophores [Text] / L. L. Moroz // J. Exp. Biol. – 2015. – V.218. – №. 4. – P.598-611.
Parfrey, L. W. Multicellularity arose several times in the evolution of eukaryotes [Text] / L. W. Parfrey, D. J. Lahr // Bioessays. – 2013. – V.35. – P.339-347.
Suga, H. Development of ichthyosporeans sheds light on the origin of metazoan multicellularity [Text] / H. Suga, I. Ruiz-Trillo // Developmental Biology. – 2013. – V.377. – P.284–292.
Sebé-Pedrós, A. Regulated aggregative multicellularity in a close unicellular relative of metazoa [Text] / A. Sebé-Pedrós, M. Irimia, J. del Campo, H. Parra-Acero, C. Russ, C. Nusbaum, B. J. Blencow, I. Ruiz-Trillo // eLife. – 2013. – V.2. – Р.1287.
Binnie, F. G. Metchnikoff, E., Immunity in infective diseases [Text] / F. G. Binnie, – London: Cambridge University Press, 1905.
Li, J. B lymphocytes from early vertebrates have potent phagocytic and microbicidal abilities [Text] / J. Li, D. R. Barreda, Y. A. Zhang, H. Boshra, A. E. Gelman // Nat. Immunol. – 2006. – V.7. – P.1116–1124.
Jakubzick, C. Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes [Text] / C. Jakubzick, E. L. Gautier, S. L. Gibbings, D. K. Sojka, A. Schlitzer , T. E. Johnson // Immunity. – 2013. – V. 39. – P. 599–610.
Italiani, P. From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation [Text] / P. Italiani, D. Boraschi // Front. Immunol. – 2014. – V.5. – P.514.
Chen, G. Immune-like Phagocyte Activity in the Social Amoeba [Text] / G. Chen, O. Zhuchenko, A. Kuspa // Science. – 2007. – V.317. – P.678-681.
Beutler, B. A. TLRs and innate immunity [Text] / B. A. Beutler // Blood. – 2009. – V.113. – P.1399-1407.
Oberbarnscheidt, M. H. Non-self recognition by monocytes initiates allograft rejection [Text] / M. H. Oberbarnscheidt, Q. Zeng, Q. Li, H. Dai, A. L. Williams, W. D. Shlomchik, D. M. Rothstein, F. G. Lakkis // J. Clin. Invest. – 2014. – V.124. – P.3579-3589.
Lourbopoulos, A. Microglia in action: how aging and injury can change the brain’s guardians [Text] / A. Lourbopoulos, A. Ertürk, F. Hellal // Front. Cell. Neurosci. – 2015. – V.9. – P.54.
Stefater, 3rd J. A. Metchnikoff’s policemen: macrophages in development, homeostasis and regeneration [Text] / 3rd J. A. Stefater, S. Ren, R. A. Lang, J. S. Duffield // Trends. Mol. Med. – 2011. – V.17. – P.743–752.
Charge, S. B. Cellular and molecular regulation of muscle regeneration [Text] / S. B. Charge, M. A. Rudnicki // Physiol. Rev. – 2004. – V.84. – P.209–238.
Marín-Teva, J. L. Microglia promote the death of developing Purkinje cells [Text] / J. L. Marín-Teva, I. Dusart, C. Colin, A. Gervais, N. van Rooijen, M. Mallat // Neuron. – 2004. – V. 41. – P.535-547.
Cunningham, C. L. Microglia regulate the number of neural precursor cells in the developing cerebral cortex [Text] / C. L. Cunningham, V. Martínez-Cerdeño, S. C. Noctor // J. Neurosci. – 2013. – V.33. – P.4216-4233.
Schafer, D. P. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner [Text] / D. P. Schafer, E. K. Lehrman, A. G. Kautzman, R. Koyama, A. R. Mardinly, R. Yamasaki, R. M. Ransohoff, M. E. Greenberg, B. A. Barres, B. Stevens // Neuron. – 2012. – V. 74. – P. 691-705.
Bahrini, I. Neuronal exosomes facilitate synaptic pruning by up-regulating complement factors in microglia [Text] / I. Bahrini, I. Hanayama // Sci. Rep. – 2015. – V.5. – P.7989.
Van Overmeire, E. Mechanisms driving macrophage diversity and specialization in distinct tumor microenvironments and parallelisms with other tissues [Text] / E. Van Overmeire, D. Laoui, J. Keirsse, J. A. Van Ginderachter, A. Sarukhan // Front. Immunol. – 2014. – V.5. – P.127.
Muraille, E. Redefining the Immune System as a Social Interface for Cooperative Processes [Text] / E. Muraille // PLoS Pathog. –2013. – V.9. – P.e1003203.
Bosch, T. C. Understanding complex host-microbe interactions in Hydra [Text] / T. C. Bosch // Gut Microbes. – 2012. – V.3. – P. 345–351
Nyholm, S. V. Knowing your friends: invertebrate innate immunity fosters beneficial bacterial symbioses [Text] / S. V. Nyholm, J. Graf // Nat. Rev. Microbiol. – 2012. – V. 10. – P. 815–827
Metchnikoff E. The Nature of Man. Studies in Optimistic Philosophy, Mitchell, P. C. / transl., G. P. Putnam’s Sons. – New York, London, 1903.
Podolsky, S. Cultural divergence: Elie Metchnikoffs’ Baciillus bulgaricus therapy and his underlying concept of health [Text] / S. Podolsky // Bull. Histo. Med. – 1998. – V.72. – P.1–27
Matsumoto, M. Longevity in mice is promoted by probiotic-induced suppression of colonic senescence dependent on upregulation of gut bacterial polyamine production [Text] / M. Matsumoto, S. Kurihara, R. Kibe, H. Ashida, Y. Benno // PLoS One. – 2011. – V. 6. – P.e23652.
Matsumoto, M. Impact of LKM512 yogurt on improvement of intestinal environment of the elderly [Text] / M. Matsumoto, H. Ohishi, Y. Benno // FEMS Immunol. Med. Microbiol. – 2001. – V.31. – P.181–186.
Specter, M. Germs are us [Text] / M. Specter // The New Yorker. – 2012. – V.88. – P.32–39
Eisenberg ,T. Induction of autophagy by spermidine promotes longevity [Text] / T. Eisenberg, H. Knauer, A. Schauer, S. Buttner, C. Ruckenstuhl // Nat. Cell. Biol. – 2009. – V.11. – P.1305–1314.
Kibe, R. Upregulation of colonic luminal polyamines produced by intestinal microbiota delays senescence in mice [Text] / R. Kibe, S. Kurihara, Y. Sakai, H. Suzuki, T. Ooga, E. Sawaki, K. Muramatsu, A. Nakamura, A. Yamashita, Y. Kitada, M. Kakeyama, Y. Benno, M. Matsumoto // Sci. Rep. – 2014. – V.4. – P.4548.
Sims, G. P. HMGB1 and RAGE in inflammation and cancer [Text] / G. P. Sims D. C. Rowe, S. T. Rietdijk, R. Herbst, A. J. Coyle // Annu. Rev. Immunol. – 2010. – V.28. – P.367-388.
Brown, G. C. Eaten alive! Cell death by primary phagocytosis: ‘Phagoptosis’ [Text] / G. C. Brown, J. J. Neher // Trends Biochem Sci. – 2012. – V. 37. – P.325–332.
Neukomm, L. J. Loss of the RhoGAP SRGP-1 promotes the clearance of dead and injured cells in Caenorhabditis elegans [Text] / L. J. Neukomm // Nat. Cell. Biol. – 2011. – V.13. – P.79–86
Fricker, M. MFG-E8 mediates primary phagocytosis of viable neurons during neuroinflammation [Text] / M. Fricker // J. Neurosci. – 2012. – V. 32. – P.2657–2666.
Neher, J. J. Phagocytosis executes delayed neuronal death after focal brain ischemia [Text] / J. J. Neher, J. V. Emmrich, M. Fricker, P. K. Mander, C. Théry, G. C. Brown // Proc. Natl. Acad. Sci. U S A. – 2013. – V. 110. – P.4098-4107.
Luo, X. G. Microglia in the aging brain: relevance to neurodegeneration [Text] / X. G. Luo, J. Q. Ding, S. D. Chen // Mol. Neurodegener. – 2010. – V. 5. – P.12
##submission.downloads##
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2020 Annals of Mechnikov's Institute
Ця робота ліцензованаІз Зазначенням Авторства – Некомерційна – Без Похідних 3.0 Міжнародна.