Molecular modeling study of the contributions of side amino acid residues of polymyxin B3 to its binding with E.coli outer membrane lipopolysaccharide
Ключові слова:
polymyxin, lipopolysaccharide, alanine scanning, binding energyАнотація
Last decades, antimicrobial peptides (AMPs) are the subject of intense investigations aimed to develop effective drugs against extremely resistant nosocomial bacterial pathogens (especially Gram-negative bacteria). In particular, there has been greatly renewed interest to polymyxins, the representatives of AMPs which are specific and highly potent against Gram-negative bacteria, but have potential nephrotoxic side effect. A prerequisite of purposeful enhancement of therapeutic properties of polymyxins is a detailed knowledge of the molecular mechanisms of their interactions with cell targets. Lipopolysaccharide (LPS), the main component of the outer leaflet of outer membrane of gram-negative bacteria, is a primary cell target of polymyxins. The aim of the paper was to study the peculiarities of molecular interactions of polymyxin В3 with lipopolysaccharide of the outer membrane of gram-negative bacterium. Materials and methods. The complexes of polymyxin В3 (PmВ3) and its alanine-derivatives with E. coli outer membrane lipopolysaccharide were built and studied by molecular modeling methods (minimization, simulated annealing, docking). Atom coordinates of polymyxin В3 and LPS structures were taken from nuclear magnetic resonance and X-ray crystallography experiments, respectively. The AMBER03 force field was used with a 1.05 nm force cutoff. Longrange electrostatic interactions were treated by the Particle Mesh Ewald method. Results and discussion. Alanine scanning of PmВ3 molecule has been carried out and the role of its side amino acid residues in the formation of complex with lipopolysaccharide has been investigated. It has been shown that substitutions of polymyxin’s Dab residues in positions 1, 3, 5, 8 and 9 for alanine markedly reduce the binding energy of PmB3-LPS complex, where as the similar substitutions of residues in positions 2, 6, 7 and 10 leave the binding energy virtually unchanged. Structural aspects of antimicrobial action of polymyxins have been analyzed. Changes of minimal inhibitory concentrations (MIC) of alanine-derivatives of polymyxin and binding energies in dependence on the alanine substituent position were parallel, except Ala2- PmВ3 mutant. Conclusions. Polymyxin’s side Dab residues, especially Dab1, Dab5, Dab 8 and Dab9, essentially contribute to the energy of polymyxin В3 binding with LPS of the outer membrane. Contribution of the others polymyxin’s side residues to the binding energy of the complex of polymyxin В3 with LPS was insignificant.
Посилання
Butler, M. S. Antibiotics in the clinical pipeline in 2011 [Text] / M. S. Butler, M. A. Cooper // J. Antibiot. – 2011. – Vol. 64, N 6. – P. 413-425.
Vlieghe, P. Synthetic therapeutic peptides: science and market [Text] / P. Vlieghe, V. Lisowski, J. Martinez, M. Khrestchatisky // Drug Discovery Today. – 2010. – Vol. 15, N 1/2. – P. 40-56.
Findlay, B. Cationic amphiphiles, a new generation of antimicrobials inspired by the natural antimicrobial peptide scaffold [Text] / B. Findlay, G. G. Zhanel, F. Schweizer // Antimicrob. Agents Chemother. – 2010. – Vol. 54, N 10. – P. 4049-4058.
Toke, O. Antimicrobial peptides: new candidates in the fight against bacterial infections [Text] / Biopolymers (Peptide Science). – 2005. – Vol. 80. – P. 717-735.
Craik, D. J. Seamless proteins tie up their loose ends [Text] / D. J. Craik // Science 2006. – Vol. 311, N 5767. – P. 1563-1567.
Visser, P. C. New cationic amphiphilic compounds as potential antibacterial agents [Text] : thesis … PhD degree in chemistry: defended 23.02.06 / Visser Peter Christian. – Leiden, 2006. – 152 p.
Yoneyama, H. Antibiotic resistance in bacteria and its future novel antibiotic development [Text] / H. Yoneyama, R. Katsumata // Biosci. Biotechnol. Biochem. – 2006. – Vol. 70, N 5. – P. 1060-1075.
Nicasio, A. M. The current state of multidrug-resistant gram-negative bacilli in North America. Insight from the Society of Infectious Diseases Pharmacists [Text] / A. M. Nicasio, J. L. Kuti, D. P. Nicolau // Pharmacotherapy. – 2008. – Vol. 28, N 2. – P. 235-249.
Yeaman, M. R. Mechanisms of antimicrobial peptide action and resistance [Text] / M. R. Yeaman, N. Y. Yount // Pharmacol. Rev. – 2003. – Vol. 55, N 1. – P. 27-55.
Velkov, T., Roberts KD, Nation RL, Thompson PE, Li J. Pharmacology of polymixins: new insights into “old” class of antibiotics [Text] / T. Velkov, K.D. Roberts, R. L. Nation, P. E. Thompson, J. Li // Future Microbiol. – 2013. – Vol. 8, N6. – P. 711-724.
Magee, T. V. Discovery of Dap-3 polymyxin analogues for the treatment of multidrug-resistant gram-negative nosocomial infections [Text] / T. V. Magee, M. F. Brown, J. T. Starr et al. // J. Med. Chem. – 2013. - Vol. 56, N 2. – P. 5079-5093.
Yahav, D. Colistin: new lessons on an old antibiotic [Text] / D. Yahav, L. Farbman, L. Leibovici, M. Paul // Clin. Microbiol. Infect. – 2012. – Vol. 18. – P. 18-29.
Grau-Campistany, A. Membrane interaction of polymyxin B and synthetic analogues studied in biomimetic systems: implications for antibacterial action [Text] / A. Grau-Campistany, F. Rabanal, M. Pujol, Y. Cajal // In: Recent Advances in Pharmaceutical Sciences III [Text] / D. Munoz-Torrero, A. Cortes, E. L. Marino, Eds. – Transworld Reseach Network, Kerala, India, 2013. – P. 61-76. – ISBN 978-81-7895-605-3.
Conly, J. M. Colistin: the phoenix arises [Text] / J. M. Conly, B. J. // Can. J. Infect. Dis. Med. Microbiol. – 2008. – Vol. 17, N 5. – P. 267-269.
Arnold, T. M. Polymyxin antibiotics for gram-negative infections [Text] / T. M. Arnold, G. N. Forrest, K. J. Messmer // Am. J. Health-System Pharmacy. – 2007. – Vol. 64, N 8. – P. 819-826.
Landman, D. Polymyxin revisited [Text] / D. Landman, C. Georgescu, A. M. Martin, J. Quale // Clin. Microbiol. Reviews. – 2008. – Vol. 21, N 3. – P. 449-465.
Kwa, A. I. Polymyxins: a critical review of the current status including recent developments [Text] / A. L. Kwa, V. H. Tam, M. E. Falagas // Ann. Acad. Med. Singapore. – 2008. – Vol. 37. – P. 870-883.
Zavascki, A. P. Polymyxin B treatment of multidrug-resistant pathogens: a critical review [Text] / A. P. Zavascki, L. Z. Goldani, J, Li, R. L. Nation // J. Antimicrob. Chemother. – 2007. – Vol. 60. – P. 1206-1215.
Fallagas, M. E. Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections [Text] / M. E. Fallagas, S. K. Kasiakou // Clinical Infection Deseases. – 2005. – Vol. 40. – P. 1333-1341.
Gales, A. C. Global assessment of the antimicrobial activity of polymyxin B against 54 731 clinical isolates of Gram-negative bacilli: report from the SENTRY antimicrobial surveillance programme (2001-2004) [Text] / A. C. Gales, R. N. Jones, H. S. Sader // Clin. Microbiol. Infect. – 2006. – Vol. 12. – P. 312-321.
McGowan, J. E. Resistance in non-fermenting gram-negative bacteria: multidrug resistance to the maximum [Text] / J. E. McGowan // Am. J. Infect. Control. – 2006. – Vol. 34, N 5 Suppl. 1. – P. S29-37.
Velkov, T. Structure-Activity Relationships of Polymyxin Antibiotics [Text] / T. Velkov, P. E. Thompson, R. L. Nation, J. Li // J. Med. Chem. – 2010. – Vol. 53, N 5. – P. 1898–1916.
Powers, J. P. The relationship between peptide structure and antibacterial activity [Text] / J. P. Powers, R. E. Hancock // Peptides. – 2003. – Vol. 24. – P. 1681–1691.
Clark, G. C. The rational design of bacterial toxin inhibitors [Text] / G. C. Clark, A. K. Basak, R. W. Titball //Current Computer-Aided Drug Design. – 2007. – Vol. 3. – P. 1-12.
Tsubery, H. Modulation of the hydrophobic domain of polymyxin B nonapeptide: effect on outer-membrane permeabilization and lipopolysaccharide neutralization [Text] / H. Tsubery, I. Ofek, S. Cohen, M. Einstain, M. Fridkin // Mol. Pharmacol. – 2002. – Vol. 62, N 5. – P. 1036-1042.
Tsubery, H. The functional association of polymyxin B with bacterial lipopolysaccharide is stereospecific: studies on polymyxin B nonapeptide [Text] / H. Tsubery, I. Ofek, S. Cohen, M. Fridkin // Biochemistry. - 2000. – Vol. 39, N 39. – P. 11837-11844.
Tsubery, H. Structure-function studies of polymyxin B nonapeptide: implications to sensitization of gram-negative bacteria [Text] / H. Tsubery, I. Ofek, S. Cohen, M. Fridkin // J. Med. Chem. – 2000. – Vol. 43, N 16. – P. 3085-3092.
Tsubery, H. N-terminal modifications of polymyxin B nonapeptide and their effect on antibacterial activity [Text] / H. Tsubery, I. Ofek, S. Cohen, M. Fridkin // Peptides – 2001. – Vol. 22, N 10. – P. 1675-1681.
Vaara, M. Novel polymyxin derivatives carring only three positive charges are effective antibacterial agents [Text] / M. Vaara, J. Fox, G. Loidl, O. Siikanen, J. Apajalahti, F. Hansen, N. Frimodt-Moller, J. Nagai, M. Takano, T. Vaara // Antimicrobial Agents and Chemotheraphy. – 2008. – Vol. 52, N 9. – P. 3229-3236.
Vaara, M. Structure-activity studies on novel polymyxin derivatives that carry only three positive charges [Text] / M. Vaara, T. Vaara // Peptides. – 2010. – Vol. 31, N 12. - P. 2318-2321.
Bai, Y. Structure-Dependent Charge Density as a Determinant of Antimicrobial Activity of Peptide Analogues of Defensin [Text] / Y. Bai, S. Liu, P. Jiang, L. Zhou, J. Li, C. Tang, C. Verma, Y. Mu, R. W. Beuerman, K. Pervushin // Biochemistry. – 2009. – Vol. 48, N 30. – P. 7229–7239.
Vaara, M. A novel polymyxin derivative that lacks fatty acid tail and carries only three carring only three positive charges has strong synergism with agents exluded by the intact outer membrane / [Text] M. Vaara, O. Silikanen, J. Apajalahti, J. Fox, N. Frimodt-Moller, H. He, A. Poudyal, J. Li, R. L. Nation, T. Vaara // Antimicrobial Agents and Chemotheraphy. – 2010. – Vol. 54, N 8. – P. 3341-3246.
Ali, F. E. A. Pharmacokinetics of novel antimicrobial cationic peptides NAB 7061 and NAB 739 in rats following intravenous administration [Text] / F. E. A. Ali, G. Cao, A. Poudyal, T. Vaara, R. L. Nation, M. Vaara, J. Li // J. Antimicrob. Chemother. – 2009. – Vol. 64. – P. 1061-1064.
Lundberg, C. V. Novel polymyxin derivatives are effective in treating experimental Escherichia coli peritoneal infection in mice [Text] / C. V. Lundberg, T. Vaara, N. Frimodt-Moller, M. Vaara // J. Antimicrob. Chemother. – 2010. – Vol. 65. – P. 981-985.
Kanazawa, K. Contribution of each amino acid residue in polymyxin B3 to antimicrobial and lipopolysaccharide binding activity [Text] / K. Kanazawa, Y. Sato, K. Ohki, K. Okimura, Y. Uchida, M. Shindo, N. Sakura // Chem. Pharm. Bull. – 2009. – Vol. 57, N 3. – P. 240-244.
Kasuma, N. Development of des-fatty acyl-polymyxin decapeptide analogs with pseudomonas aeruginosa-specific antimicrobial activity Text] / N. Kasuma, Y. Sato, K. Ohki, K. Okimura, K. Ohnishi, N. Sakura // Chem. Pharm. Bull. – 2009. – Vol. 57, N 4. – P. 332-336.
Okimura, K. Semi-synthesis of polymyxin B (2-10) and colistin (2-10) analogs employing the trichloroethoxycarbonyl (Troc) group for side chain protection of α,γ-diaminobutyric acid residues [Text] / K. Okimura, K. Ohki, Y. Sato, K. Ohnishi, N. Sakura // Chem. Pharm. Bull. – 2007. – Vol. 55, N 12. – P. 1724-1730.
Sakura, N. The contribution of the N-terminal structure of polymyxin B peptides to antimicrobial and lipopolysaccharide binding activity [Text] / N. Sakura, T. Itoh, Y. Uchida, K. Ohki, K. Okimura, K. Chiba, Y. Sato, H. Sawanishi // Bull. Chem. Soc. Jap. – 2004. – 77, N 10. – P. 1915-1924.
Sato, Y. Novel des-fatty acyl-polymyxin B derivatives with Pseudomonas aeruginosa-specific antimicrobial activity [Text] / Y. Sato, M. Shindo, N. Sakura, Y. Uchida, I. Kato // Chem. Pharm. Bull. – 2011. – Vol. 59, N 5. – P. 597-602.
Martin N. L. Isolation, structural characterization, and properties of mattacin (polymyxin M), a cyclic peptide antibiotic produced by Paenibacillus kobensis M [Text] / N. L. Martin, H. Hu, M. M. Moake, J. J. Churey, R. Whittal, R. W. Worobo, J. C. Vederas // The Journal of Biological Chemistry. – 2003. – Vol. 278, N 15. – P. 13124-13132.
Hancock, R. E. W. Peptide antibiotics [Text] / R. E. W. Hancock, D. S. Chapple //Antimicrobial Agents and Chemotheraphy. – 1999. – Vol. 43, N 6. – P. 1317-1323.
Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited [Text] / H. Nikaido // Microbiol. Molec. Biol. Rev. – 2003. – Vol. 67. – P. 593-656.
Pristovsek, P. Solution structure of polymyxis B and E and effect of binding to lipopolysaccharide: an NMR and molecular dynamics study [Text] / P. Pristovsek, J. Kidric. // J. Med. Chem. – 1999. – Vol. 42. – P. 4604-4613.
Pristovsek, P. The search for molecular determinants of LPS inhibition by proteins and peptides [Text] / P. Pristovsek, J. Kidric. // Curr. Top. Med. Chem. – 2004. – Vol. 4. – P.1185-1201.
Mares, J. Interactions of lipopolysaccharide and polymyxin studied by NMR spectroscopy [Text] / J. Mares, S. Kumaran, M. Gobbo, O. Zerbe //J. Biol. Chem. – 2009. – Vol. 284, N 17. – P. 11498-11506.
Soon, R. L. Design, synthesis and evaluation of a new fluorescent probe for measuring polymyxin-lipopolysaccharide binding interactions [Text] / R. L. Soon, T. Velkov, F. Chui, P. E. Thompson, R. Kancharla, K. Roberts, I. Larson, R. L. Nation, J. Li // Anal. Biochem. – 2011. – Vol. 409, N 2. – P. 273-283.
Meredith, J. J. Comparison of the structure and dynamics of the antibiotic peptide polymyxin B and the inactive nonapeptide in aqueous trifluoroethanol by NMR spectroscopy [Text] / J. J. Meredith, A. Dufour, M. D. Bruch // J. Chem. Phys. – 2009. – Vol. 113, N 2. – P. 544-551.
Bhattacharjya, S. Polymyxin B nonapeptide: conformations in water and in the lipopolysaccharide-bound state determined by two-dimensional NMR and molecular dynamics [Text] / S. Bhattacharjya, S. A. David, V. I. Mathan, P. Balaram // Bioploymers. – 1997. – Vol. 41, N 3. – P. 251-265.
Bhunia, A. Mapping residue-specific contacts of polymyxin B with lipopolysaccharide by saturation transfer difference NMR: insights into outer-membrane disruption and endotoxin neutralization [Text] / A. Bhunia, S. Bhattacharjya // Biopolymers. – 2011. –Vol. 96, N 3. ¬– P. 273-287.
Leach, A. R. Molecular Modelling/Principles and Applications [Text] / A. R. Leach. – Essex: Addison Wesley Longman Ltd. – 1996. – 597 p. – ISBN 0-582-23933-8.
Lu, D. The role of molecular modeling in the biotechnology [Text] / D. Lu, A. Aksimentiev, A. Y. Shin, E. Cruz-Chu, et al. // Phys. Biol. – 2006. – Vol. 3. – P. S40-S53.
Zhong, S. Computational identification of inhibitors of protein-protein interactions [Text] / S. Zhong, A. T. Macias, A. D. MacKerrel Jr. // Current Topics in Medicinal Chemistry. – 2007. – Vol. 7. – P. 63-83.
Krieger, E. Increasing the precision of comparative models with YASARA NOVA - a self-parameterizing force field [Text] / E. Krieger, G. Koraimann, G. Vriend // Proteins. – 2002. – Vol. 47. – P. 393-402.
Krieger, E. Making optimal use of empirical energy functions: force field parameterization in crystal space [Text] / E. Krieger, T. Darden, S. Nabuurs, A. Finkelstein, G. Vriend // Proteins. – 2004. – Vol. 57. – P. 678-683.
Kreiger, E. Improving physical realism, stereochemistry, and side-chain accuracy in homology modelling: four approaches that perfomed well in CASP8 [Text] / E. Kreiger, K. Joo, J. Lee, J. Lee, S. Raman, J. Thompson, M. Tyka, D. Baker, K. Karplus // Proteins. – 2009. – Vol. 77, Suppl. 9. – P. 114-122.
Krieger E, Dunbrack RL Jr, Hooft RW, Krieger B (2012) Methods Mol Biol. 819, 405-421.
Ferguson, A. D. A conserved structural motif for lipopolysaccharide recognition by procaryotic and eucaryotic proteins [Text] / A. D. Ferguson, W. Welte, E. Hofmann, B. Lindner, O. Holst, J. W. Coulton, K. Diederichs // Structure. – 2000. – Vol. 8. – P. 585-592.
Duan, Y. A Point-Charge Force Field for Molecular Mechanics Simulations of Proteins [Text] / Y. Duan, C. Wu, S. Chowdhury, M. C. Lee, G. Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee // J.Comput.Chem. 2003. – Vol. 24. – P. 1999-2012.
Essman, U. A smooth particle mesh Ewald method [Text] / Essman U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG // J.Chem.Phys.B. – 1995. – Vol. 103. – P. 8577-8593.
Anderson, A. C. Structure-based functional design of drugs: from target to lead compound [Text] / A. C. Anderson // Methods Mol. Biol. – 2012. – Vol. 823. – P. 359-366.
Trott, O. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading [Text] / J. Comput. Chem. – 2010. – Vol. 31, N 2. – P. 455-461.
Wang, J. Development and testing of a general amber force field [Text] / J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case // J.Comput.Chem. – 2004. – Vol. 25, N 9. – P. 1157-1174
Jakalian, A. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation [text] / A. Jakalian, D. B. Jack, C. I. Bayly // J. Comput. Chem. – 2002. – Vol. 23, N 15. – P. 1623-1641.
David, S. A. Towards a rational development of anti-endotoxin agents: novel approaches to sequestration of bacterial endotoxins with small molecules. J. Mol. Recognit. – 2001. – Vol. 14, N6. – P. 370-387.
##submission.downloads##
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2020 Annals of Mechnikov's Institute
Ця робота ліцензованаІз Зазначенням Авторства – Некомерційна – Без Похідних 3.0 Міжнародна.