Pavlo Krivenko

Kyiv National University of Construction and Architecture, Ukraine
Doctor of Technical Sciences, Professor, Director
Scientific Research Institute for Binders and Materials

Scopus profile: link
Researcher ID: O-6027-2015
GoogleScholar profile:

Selected Publications:

  1. Kryvenko, P., Rudenko, I., Kovalchuk, O., Gelevera, O., Konstantynovskyi, O. (2023). Influence of Dosage and Modulus on Soluble Sodium Silicate for Early Strength Development of Alkali-Activated Slag Cements. Minerals, 13 (9), 1164. doi: 

  2. Kryvenko, P. V., Kolisnychenko, S. (2023). Green Concrete. Specialized Collections. TTP, 560. doi: 

  3. Krivenko, P., Rudenko, I., Konstantynovskyi, O. (2023). Effect of technological factors on freeze-thaw resistance of alkali-activated slag cement concrete in NaCl solution. AIP Conference Proceedings. doi: 

  4. Krivenko, P., Rudenko, I., Konstantynovskyi, O., Vaičiukynienė, D. (2023). Feasibility of incorporating SO42--ions in zeolite-like matrices based on alkaline aluminosilicate binders. Construction and Building Materials, 391, 131878. doi: 

  5. Krivenko, P. V., Kovalchuk, O., Zozulynets, V. (2023). Alternative binders—high volume bauxite red mud alkali activated cements and concretes. Recycled Concrete, 283–308. doi: 

  6. Krivenko, P., Rudenko, I., Konstantynovskyi, O., Vaičiukynienė, D. (2022). Mitigation of Corrosion Initiated by Cl− and SO42−-ions in Blast Furnace Cement Concrete Mixed with Sea Water. Materials, 15 (9), 3003. doi: 

  7. Sikora, P., Chougan, M., Cuevas, K., Liebscher, M., Mechtcherine, V., Ghaffar, S. H. et. al. (2021). The effects of nano- and micro-sized additives on 3D printable cementitious and alkali-activated composites: a review. Applied Nanoscience, 12 (4), 805–823. doi: 

  8. Gijbels, K., Krivenko, P., Kovalchuk, O., Pasko, A., Schreurs, S., Pontikes, Y., Schroeyers, W. (2020). The influence of porosity on radon emanation in alkali-activated mortars containing high volume bauxite residue. Construction and Building Materials, 230, 116982. doi: 

  9. Krivenko, P., Vaičiukynienė, D., Kantautas, A., Vaitkevičius, V., Šerelis, E. (2019). Effect of AlF3 production waste on the processes of hydration and hardening of the alkali-activated Portland cement with sodium silicate hydrate. Journal of Thermal Analysis and Calorimetry, 138 (2), 879–887. doi: 

  10. Alonso, M. M., Pasko, A., Gascó, C., Suarez, J. A., Kovalchuk, O., Krivenko, P., Puertas, F. (2018). Radioactivity and Pb and Ni immobilization in SCM-bearing alkali-activated matrices. Construction and Building Materials, 159, 745–754. doi: 

  11. Krivenko, P., Petropavlovskyi, O., Kovalchuk, O. (2018). A comparative study on the influence of metakaolin and kaolin additives on properties and structure of the alkali­activated slag cement and concrete. Eastern-European Journal of Enterprise Technologies, 1 (6 (91)), 33–39. doi: 

  12. Krivenko, P., Kovalchuk, O., Pasko, A. (2018). Utilization of Industrial Waste Water Treatment Residues in Alkali Activated Cement and Concretes. Key Engineering Materials, 761, 35–38. doi: 

  13. Krivenko, P., Petropavlovsky, О., Vozniuk, G. (2018). Alkaline Aluminosilicate Binder for Gluing Wood Board Materials. Key Engineering Materials, 761, 11–14. doi: 

  14. Krivenko, P., Kovalchuk, O., Pasko, A., Croymans, T., Hult, M., Lutter, G. et. al. (2017). Development of alkali activated cements and concrete mixture design with high volumes of red mud. Construction and Building Materials, 151, 819–826. doi: 

  15. Krivenko, P., Petropavlovsky, O., Vozniuk, H. (2017). Development of mixture design of heat resistant alkali-activated aluminosilicate binder-based adhesives. Construction and Building Materials, 149, 248–256. doi: 

  16. Krivenko, P. V., Guzii, S., Hela, R. (2017). The Influence of Cavitation Treatment on Nano Structuring of Alkali Aluminosilicate Binder for Intumescent Coatings. Materials Science Forum, 908, 63–70. doi: 

  17. Pavel, K., Oleg, P., Hryhorii, V., Serhii, L. (2017). The Development of Alkali-activated Cement Mixtures for Fast Rehabilitation and Strengthening of Concrete Structures. Procedia Engineering, 195, 142–146. doi: