Volodymyr Loboda

Oles Honchar Dnipro National University, Ukraine
Doctor of physical and mathematical sciences, Professor
Department of theoretical and computational mechanics

Scopus profile:
Researcher ID: T-6395-2017
Google Scholar profile:
ID ORCID: https://orcid.org/0000-0002-0432-629X

Selected Publications:

  1. Loboda, V., Sheveleva, A., Chapelle, F., Lapusta, Y. (2022). Impact of an interface electrode charge and materials polarization to a conductive interface crack. Mechanics Research Communications, 124, 103923. doi: https://doi.org/10.1016/j.mechrescom.2022.103923 

  2. Loboda, V., Sheveleva, A., Chapelle, F., Lapusta, Y. (2022). A set of electrically conducting collinear cracks between two dissimilar piezoelectric materials. International Journal of Engineering Science, 178, 103725. doi: https://doi.org/10.1016/j.ijengsci.2022.103725 

  3. Kozinov, S., Loboda, V. (2020). Fracture Mechanics of Electrically Passive and Active Composites with Periodic Cracking along the Interface. Springer Tracts in Mechanical Engineering. Springer, 126. doi: http://doi.org/10.1007/978-3-030-43138-9

  4. Govorukha, V., Kamlah, M., Loboda, V., Lapusta, Y. (2017). Fracture Mechanics of Piezoelectric Solids with Interface Cracks. Series: Lecture Notes in Applied and Computational Mechanics. Springer, 235. doi: http://doi.org/10.1007/978-3-319-53553-1

  5. Loboda, V., Sheveleva, A., Chapelle, F., Lapusta, Y. (2020). A dielectric breakdown model for an electrode along an interface between two piezoelectric materials. Engineering Fracture Mechanics, 224, 106809. doi: http://doi.org/10.1016/j.engfracmech.2019.106809

  6. Loboda, V., Komarov, O., Bilyi, D., Lapusta, Y. (2020). An analytical approach to the analysis of an electrically permeable interface crack in a 1D piezoelectric quasicrystal. Acta Mechanica, 231 (8), 3419–3433. doi: http://doi.org/10.1007/s00707-020-02721-8

  7. Sheveleva, A., Loboda, V., Lapusta, Y. (2020). A conductive crack and a remote electrode at the interface between two piezoelectric materials. Applied Mathematical Modelling, 87, 287–299. doi: http://doi.org/10.1016/j.apm.2020.06.003

  8. Kozinov, S., Sheveleva, A., Loboda, V. (2019). Fracture behavior of periodically bonded interface of piezoelectric bi-material under compressive–shear loading. Mathematics and Mechanics of Solids, 24 (10), 3216–3230. doi: http://doi.org/10.1177/1081286519838304

  9. Onopriienko, O., Loboda, V., Sheveleva, A., Lapusta, Y. (2019). Bond zone model for a conductive crack at the interface of piezoelectric materials under anti‐plane mechanical and in‐plane electric loadings. ZAMM – Journal of Applied Mathematics and Mechanics, 99 (9). doi:http://doi.org/10.1002/zamm.201800230

  10. Viun, O., Komarov, A., Lapusta, Y., Loboda, V. (2018). A polling direction influence on fracture parameters of a limited permeable interface crack in a piezoelectric bi-material. Engineering Fracture Mechanics, 191, 143–152. doi: http://doi.org/10.1016/j.engfracmech.2018.01.024

  11. Lapusta, Y., Onopriienko, O., Loboda, V. (2017). An interface crack with partially electrically conductive crack faces under antiplane mechanical and in-plane electric loadings. Mechanics Research Communications, 81, 38–43. doi: http://doi.org/10.1016/j.mechrescom.2017.02.004

  12. Govorukha, V., Kamlah, M., Loboda, V., Lapusta, Y. (2016). Interface cracks in piezoelectric materials. Smart Materials and Structures, 25 (2), 023001. doi: http://doi.org/10.1088/0964-1726/25/2/023001