Models and methods of regression analysis under conditions of fuzzy initial data

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.107536

Keywords:

fuzzy regression analysis, fuzzy initial data, fuzzy comparator identification

Abstract

The paper considers the problem of regression analysis with indeterminate explanatory and explained variables. A quality criterion for estimating the regression coefficients is formulated and justified, taking into account possible significant differences in the accuracy of assigning different variables. The study considers a method of calculating the regression coefficients in accordance with the concept of least squares. The proposed approach provides a reasonable compromise between the conflicting requirements: the maximum compactness of the fuzzy value function of the explained variable and the minimal deviation of the solution from the modal one. The problem is solved by minimizing the complex criterion, the terms of which determine the level of satisfaction of these requirements. An additional advantage of the approach is that the original problem, fuzzy by the nature of the initial data, is reduced to solving two usual problems of mathematical programming. The problem of fuzzy comparator identification is considered when the values of the explained variable are not defined but can be ranked by the descending of any chosen indicator. To solve this problem, the study proposes a method for estimating regression coefficients based on solving a fuzzy system of linear algebraic equations

Author Biographies

Lev Raskin, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor, Head of Department

Department of distributed information systems and cloud technologies

Oksana Sira, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of distributed information systems and cloud technologies

Yuriy Ivanchykhin, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of distributed information systems and cloud technologies

References

  1. Linear Regression Analysis with Fuzzy Model (1982). IEEE Transactions on Systems, Man, and Cybernetics, 12 (6), 903–907. doi: 10.1109/tsmc.1982.4308925
  2. Yang, M.-S., Liu, H.-H. (2003). Fuzzy least-squares algorithms for interactive fuzzy linear regression models. Fuzzy Sets and Systems, 135 (2), 305–316. doi: 10.1016/s0165-0114(02)00123-9
  3. Chen, F., Chen, Y., Zhou, J., Liu, Y. (2016). Optimizing h value for fuzzy linear regression with asymmetric triangular fuzzy coefficients. Engineering Applications of Artificial Intelligence, 47, 16–24. doi: 10.1016/j.engappai.2015.02.011
  4. Ishibuchi, H., Nii, M. (2001). Fuzzy regression using asymmetric fuzzy coefficients and fuzzified neural networks. Fuzzy Sets and Systems, 119 (2), 273–290. doi: 10.1016/s0165-0114(98)00370-4
  5. Chang, Y.-H. O., Ayyub, B. M. (2001). Fuzzy regression methods – a comparative assessment. Fuzzy Sets and Systems, 119 (2), 187–203. doi: 10.1016/s0165-0114(99)00091-3
  6. Yen, K. K., Ghoshray, S., Roig, G. (1999). A linear regression model using triangular fuzzy number coefficients. Fuzzy Sets and Systems, 106 (2), 167–177. doi: 10.1016/s0165-0114(97)00269-8
  7. Charfeddine, S., Mora-Camino, F. A. C., De Coligny, M. (2004). Fuzzy linear regression: application to the estimation of air transport demand. FSSCEF 2004, International Conference on Fuzzy Sets and Soft Computing in Economics and Finance, 350–359. Available at: https://hal-enac.archives-ouvertes.fr/hal-01022443
  8. Zaychenko, Yu. P. (2007). Nechetkiy metod gruppovogo ucheta argumentov pri neopredelennyh iskhodnyh dannyh. Systemni doslidzhennia ta informatsiini tekhnolohii, 3, 100–112.
  9. Zgurovskiy, M., Zaychenko, Yu. (2013). Modeli i metody prinyatiya resheniy v nechetkih usloviyah. Kyiv: Naukova dumka, 275.
  10. Celmins, A. (1987). Least squares model fitting to fuzzy vector data. Fuzzy Sets and Systems, 22 (3), 245–269. doi: 10.1016/0165-0114(87)90070-4
  11. Muzzioli, S., Ruggieri, A., De Baets, B. (2015). A comparison of fuzzy regression methods for the estimation of the implied volatility smile function. Fuzzy Sets and Systems, 266, 131–143. doi: 10.1016/j.fss.2014.11.015
  12. Diamond, P. (1988). Fuzzy least squares. Information Sciences, 46 (3), 141–157. doi: 10.1016/0020-0255(88)90047-3
  13. Chang, Y.-H. O. (2001). Hybrid fuzzy least-squares regression analysis and its reliability measures. Fuzzy Sets and Systems, 119 (2), 225–246. doi: 10.1016/s0165-0114(99)00092-5
  14. Yang, M.-S., Lin, T.-S. (2002). Fuzzy least-squares linear regression analysis for fuzzy input–output data. Fuzzy Sets and Systems, 126 (3), 389–399. doi: 10.1016/s0165-0114(01)00066-5
  15. Kao, C., Chyu, C.-L. (2002). A fuzzy linear regression model with better explanatory power. Fuzzy Sets and Systems, 126 (3), 401–409. doi: 10.1016/s0165-0114(01)00069-0
  16. Shtovba, S. D. (2016). Nechetkaya identifikaciya na osnove regressionnyh modeley parametricheskoy funkcii prinadlezhnosti. Problemy upravleniya i informatiki, 6, 1–8.
  17. Chachi, J., Taheri, S. M. (2016). Multiple fuzzy regression model for fuzzy input-output data. Iranian Journal of Fuzzy Systems, 13 (4), 63–78.
  18. Zak, Yu. (2017). Fuzzy-regressionnye modeli v usloviyah nalichiya v statisticheskiy vyborke nechislovoy informacii. System Research & Information Technologies, 1, 88–96.
  19. Jung, H.-Y., Yoon, J. H., Choi, S. H. (2015). Fuzzy linear regression using rank transform method. Fuzzy Sets and Systems, 274, 97–108. doi: 10.1016/j.fss.2014.11.004
  20. Pushpa, B., Vasuki, R. (2013). A Least Absolute Approach to Multiple Fuzzy Regression Using Tw- Norm Based Operations. International Journal of Fuzzy Logic Systems, 3 (2), 73–84. doi: 10.5121/ijfls.2013.3206
  21. Namdari, M., Yoon, J. H., Abadi, A., Taheri, S. M., Choi, S. H. (2014). Fuzzy logistic regression with least absolute deviations estimators. Soft Computing, 19 (4), 909–917. doi: 10.1007/s00500-014-1418-2
  22. Ubale, A. B., Sananse, S. L. (2015). Fuzzy Regression Model and Its Application: A Review. International Journal of Innovative Research in Science, Engineering and Technology, 4 (11), 10853–10860.
  23. Kryuchkovskiy, V. V., Petrov, Eh. G., Sokolova, N. A., Hodakov, V. E. (2013). Vedenie v normativnuyu teoriyu prinyatiya resheniy. Herson: Grin' D. S., 284.
  24. Zuhovickiy, S. I., Avdeeva, L. I. (1967). Lineynoe i vypukloe programmirovanie. Moscow: Nauka, 460.
  25. Sira, O. V., Al-Shqeerat, K. H. (2009). A New Approach for Resolving Equations with Fuzzy Parameters. European Journal of Scientific Research, 38 (4), 619–625.
  26. Seraya, O. V., Demin, D. A. (2012). Linear Regression Analysis of a Small Sample of Fuzzy Input Data. Journal of Automation and Information Sciences, 44 (7), 34–48. doi: 10.1615/jautomatinfscien.v44.i7.40
  27. Raskin, L. G., Seraya, O. V. (2008). Nechetkaya matematika. Kharkiv: Parus, 352.
  28. Raskin, L., Sira, O. (2016). Method of solving fuzzy problems of mathematical programming. Eastern-European Journal of Enterprise Technologies, 5 (4 (83)), 23–28. doi: 10.15587/1729-4061.2016.81292
  29. Pawlak, Z. (1982). Rough sets. International Journal of Computer & Information Sciences, 11 (5), 341–356. doi: 10.1007/bf01001956
  30. Raskin, L., Sira, O. (2016). Fuzzy models of rough mathematics. Eastern-European Journal of Enterprise Technologies, 6 (4 (84)), 53–60. doi: 10.15587/1729-4061.2016.86739
  31. Raskin, L. G., Kirichenko, I. O., Seraya, O. V. (2013). Prikladnoe kontinual'noe lineynoe programmirovanie. Kharkiv, 293.

Downloads

Published

2017-08-30

How to Cite

Raskin, L., Sira, O., & Ivanchykhin, Y. (2017). Models and methods of regression analysis under conditions of fuzzy initial data. Eastern-European Journal of Enterprise Technologies, 4(4 (88), 12–19. https://doi.org/10.15587/1729-4061.2017.107536

Issue

Section

Mathematics and Cybernetics - applied aspects