The effect of using an energy accumulator on the level of emissions of pollutant substances by a shunting locomotive

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.176908

Keywords:

emissions of pollutants, shunting operations, modernization of shunting locomotives, energy collector, hybrid drive

Abstract

Shunting locomotives at railroad stations account for most emissions of pollutants into the atmosphere. A significant share of these emissions depends on the position of the driver's controller that is used to operate a diesel locomotive, as each position of the controller corresponds to a specific rotation frequency and power of the diesel engine. We have investigated the influence of application of the energy accumulator within a power circuit of a shunting locomotive on the level of emissions of pollutants into the atmosphere when it performs different shunting operations. The relation has been established between the levels of pollutant emission into the atmosphere and the types of shunting operations performed. We have obtained statistical data regarding the time of a diesel locomotive shunting operation at each position of the driver's controller when performing different types of shunting work. That makes it possible to optimally select the parameters of an energy accumulator for a shunting locomotive, which can meet both the technical and environmental requirements. It was established, based on the results from the current study, that using the energy accumulator within a power circuit of a shunting diesel locomotive reduces the amount of emissions of carbon oxide CO, nitric oxide NOх, sulfur dioxide SO2, soot and hydrocarbons, into the atmosphere by 20...30 % depending on the type of performed shunting operations and the capacity of the energy accumulator applied. Bringing down the level of specified emissions would make it possible to improve environmental conditions at a station

Author Biographies

Roman Yarovoy, Ukrainian State University of Railway Transport Feierbakha sq., 7, Kharkiv, Ukraine, 61050

Senior Lecturer

Department of Computer Science and Control Systems

Natalia Chernetskaya-Beletskaya, Volodymyr Dahl East Ukrainian National University Tsentralnyi ave., 59-а, Severodonetsk, Ukraine, 93400

Doctor of Technical Sciences, Professor, Head of Department

Department of Logistics and Traffic Safety

Evgeny Mikhailov, Volodymyr Dahl East Ukrainian National University Tsentralnyi ave., 59-а, Severodonetsk, Ukraine, 93400

PhD, Associate Professor

Department of Logistics and Traffic Safety

References

  1. Walsh, M. P. (2011). Mobile Source Related Air Pollution: Effects on Health and the Environment. Encyclopedia of Environmental Health, 803–809. doi: https://doi.org/10.1016/b978-0-444-52272-6.00184-7
  2. Buekers, J., Van Holderbeke, M., Bierkens, J., Int Panis, L. (2014). Health and environmental benefits related to electric vehicle introduction in EU countries. Transportation Research Part D: Transport and Environment, 33, 26–38. doi: https://doi.org/10.1016/j.trd.2014.09.002
  3. Dzikuć, M., Adamczyk, J. (2014). The ecological and economic aspects of a low emission limitation: a case study for Poland. The International Journal of Life Cycle Assessment, 20 (2), 217–225. doi: https://doi.org/10.1007/s11367-014-0819-x
  4. Düring, I., Bächlin, W., Ketzel, M., Baum, A., Friedrich, U., Wurzler, S. (2011). A new simplified NO/NO2 conversion model under consideration of direct NO2-emissions. Meteorologische Zeitschrift, 20 (1), 67–73. doi: https://doi.org/10.1127/0941-2948/2011/0491
  5. Honcharov, O. M., Kinter, S. O., Tereshchak, Yu. V. (2014). Analysis of Prerequisites of Modernization of Shunting Locomotives of the Lviv Railroad Hybrid Power Station. Zaliznychnyi transport Ukrainy, 6, 19–25.
  6. Kahramanian, A. O., Rukavishnykov, P. V. (2010). Doslidzhennia vplyvu osnovnykh faktoriv ekspluatatsiyi dyzeliv teplovoziv na vykydy zabrudniuiuchykh rechovyn. Zbirnyk naukovykh prats DonIZT, 21, 160–169.
  7. Tighe, C. J., Twigg, M. V., Hayhurst, A. N., Dennis, J. S. (2012). The kinetics of oxidation of Diesel soots by NO2. Combustion and Flame, 159 (1), 77–90. doi: https://doi.org/10.1016/j.combustflame.2011.06.009
  8. Sarvi, A., Lyyränen, J., Jokiniemi, J., Zevenhoven, R. (2011). Particulate emissions from large-scale medium-speed diesel engines: 1. Particle size distribution. Fuel Processing Technology, 92 (10), 1855–1861. doi: https://doi.org/10.1016/j.fuproc.2011.04.031
  9. Lee, T., Park, J., Kwon, S., Lee, J., Kim, J. (2013). Variability in operation-based NOx emission factors with different test routes, and its effects on the real-driving emissions of light diesel vehicles. Science of The Total Environment, 461-462, 377–385. doi: https://doi.org/10.1016/j.scitotenv.2013.05.015
  10. Reşitoğlu, İ. A., Altinişik, K., Keskin, A. (2014). The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Technologies and Environmental Policy, 17 (1), 15–27. doi: https://doi.org/10.1007/s10098-014-0793-9
  11. Falendysh, A., Hatchenko, V., Kletska, O. (2017). The analysis of approaches to the calculation of emissions from the exhaust gases of diesel locomotives. Visnyk im. V. Dalia, 3 (233), 228–233.
  12. HSTU 32.001-94. Vykydy zabrudniuiuchykh rechovyn z vidpratsovanymy hazamy teplovoznykh dyzeliv. Normy ta metody vyznachennia. Chynnyi vid 01.01.1995 r.
  13. Yarovoy, R., Chernetska-Biletska, N. (2019). Method of immatious modeling of electrodynamic braking processes. Visnyk im. V. Dalia, 3 (251), 216–219.
  14. Kudryavcev, A. P., Chichin, A. V., Sakaev, E. K. (1999). Sredstva ekologicheskogo kontrolya. Lokomotiv, 3, 26–28.
  15. Smaylis, V. I. (1991). Sovremennoe sostoyanie i novye problemy ekologii dizelestroeniya. Dvigatelestroenie, 1, 3–6.
  16. Malov, R. P., Evgunov, P. M., Pankov, Yu. N., Sheynin, M. G. (1991). Tehniko-ekologicheskie harakteristiki teplovozov. Moscow: TR. VNIIZHT, 35–40.
  17. Kosov, Ye. Ye., Azarenko, V. A., Korniev, A. N., Komarnytskyi, M. M. (2008). Vplyv efektyvnosti nakopychuvacha enerhii na palyvnu ekonomichnist lokomotyva. Lokomotiv, 3, 44–45.
  18. Bolzhelarskyi, Ya. V., Honcharov, O. M. (2007). Dosvid i problemy normuvannia palyva na manevrovu robotu v umovakh Lvivskoi zaliznytsi. Zaliznychnyi transport Ukrainy, 2, 71–72.
  19. Liudvinavičius, L. Lingaitis, L. P. (2010). New locomotive energy management systems. Maintenance and reliability, 1, 35–41.
  20. Barrade, P. (2001). Series connexion of Supercapacitors: comparative study of solutions for the active equalization of the voltage, École de Technologie Supérieure (ETS). Montréal.
  21. Boyes, J. D., Clark, N. H. (2000). Technologies for energy storage. Flywheels and super conducting magnetic energy storage. 2000 Power Engineering Society Summer Meeting (Cat. No.00CH37134). doi: https://doi.org/10.1109/pess.2000.868760
  22. Poór, I., Varga, M., Németh, G., Rónai, A., Nemes, P. (2012). Az Mk48 403 Mozdony Hibridhajtású Fejlesztése, Vasútgépészet, 4, 9–14.
  23. Schofield, N., Yap, H. T., Bingham, C. M. (2005). Hybrid Energy Sources for Electric and Fuel Cell Vehicle Propulsion. 2005 IEEE Vehicle Power and Propulsion Conference. doi: https://doi.org/10.1109/vppc.2005.1554530
  24. Steiner, M., Scholten, J. (2005). Energy storage on board of railway vehicles. 2005 European Conference on Power Electronics and Applications. doi: https://doi.org/10.1109/epe.2005.219410

Downloads

Published

2019-08-27

How to Cite

Yarovoy, R., Chernetskaya-Beletskaya, N., & Mikhailov, E. (2019). The effect of using an energy accumulator on the level of emissions of pollutant substances by a shunting locomotive. Eastern-European Journal of Enterprise Technologies, 4(10 (100), 52–58. https://doi.org/10.15587/1729-4061.2019.176908