Development of the correlation method for operative detection of recurrent states

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.187252

Keywords:

correlation of states, energy interaction, fragment of trajectory of states, recurrent states, complex dynamical systems, gas atmospheric pollution

Abstract

The correlation method for operative detection of recurrent states in complex dynamical systems at irregular measurements was proposed. The concepts of correlation for the case of the vectors of states of the trajectory of dynamics of complex systems and estimates of vectors correlation for a fixed length fragment moving along the trajectory were generalized. The space with scalar product of states vectors is used to implement the method. Estimation of the magnitudes of correlations of state vectors makes it possible to interpret them as corresponding levels of energy interaction of states vectors and to detect degree of their recurrence. In this case, calculation of the magnitudes of correlation are carried out only based on the known measurements of the state vector and does not require determining the threshold and the method of distance calculation, traditionally used in the methods of recurrent plots. The efficiency of the proposed method was tested on a specific example of experimental data of the actual dynamics of the vector of states of pollution of the urban atmosphere. The following gas pollutants were considered as components of the vector of state: formaldehyde, ammonia and carbon dioxide. The obtained results in general indicate the efficiency of the proposed method. It was established experimentally that the correlation method in case of irregular measurements of atmospheric contaminations ensures the authenticity of detection of recurrent states, corresponding to maximum correlation of states. In this case, the correlation assessment should be conducted for a movable fragment of a trajectory of the states vector. The length of the fragment should not be more than 10 responses

Author Biographies

Boris Pospelov, Scientific-Methodical Center of Educational Institutions in the Sphere of Civil Defence Chernyshevska str., 94, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Professor

Department of Organization and Coordination of Research Activities

Vladimir Andronov, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Professor

Research Center

Evgeniy Rybka, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Senior Researcher

Research Center

Olekcii Krainiukov, V. N. Karazin Kharkiv National University Svobody sq., 4, Kharkiv, Ukraine, 61022

Doctor of Geographical Sciences, Associate Professor

Department of Ecological Safety and Environmental Education

Kostiantyn Karpets, V. N. Karazin Kharkiv National University Svobody sq., 4, Kharkiv, Ukraine, 61022

PhD, Associate Professor

Department of Ecology and Neoecology

Oleksandr Pirohov, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD

Department of Fire Prevention in Settlements

Iryna Semenyshyna, State Agrarian and Engineering University in Podilya Shevchenka str., 13, Kamianets-Podilskyi, Ukraine, 32300

PhD, Associate Professor

Academic and Research Institute of Distance Learning

Ruslan Kapitan, Cherkasy State Technological University Shevchenka blvd., 460, Cherkasy, Ukraine, 18000

PhD

Department of Mechanics, Printing Machines and Technology

Alona Promska, National University of Civil Defence of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD

Research Center

Oleksii Horbov, Military Institute of the Tank Troops National Technical University "Kharkiv Polytechnic Institute" Poltavskiy Shlyah str., 192, Kharkіv, Ukraine, 61000

PhD

References

  1. Webber, C., Marwan, N. (2015). Recurrence quantification analysis. Springer. doi: https://doi.org/10.1007/978-3-319-07155-8
  2. Marwan, N., Webber, C. L., Macau, E. E. N., Viana, R. L. (2018). Introduction to focus issue: Recurrence quantification analysis for understanding complex systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28 (8), 085601. doi: https://doi.org/10.1063/1.5050929
  3. Oya, S., Aihara, K., Hirata, Y. (2014). Forecasting abrupt changes in foreign exchange markets: method using dynamical network marker. New Journal of Physics, 16 (11), 115015. doi: https://doi.org/10.1088/1367-2630/16/11/115015
  4. Marwan, N. (2011). How to avoid potential pitfalls in recurrence plot based data analysis. International Journal of Bifurcation and Chaos, 21 (04), 1003–1017. doi: https://doi.org/10.1142/s0218127411029008
  5. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Gornostal, S. (2018). Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials. Eastern-European Journal of Enterprise Technologies, 5 (10 (95)), 25–30. doi: https://doi.org/10.15587/1729-4061.2018.142995
  6. Takens, F. (1981). Detecting strange attractors in turbulence. Dynamical Systems and Turbulence, Warwick 1980, 366–381. doi: https://doi.org/10.1007/bfb0091924
  7. Pospelov, B., Rybka, E., Meleshchenko, R., Borodych, P., Gornostal, S. (2019). Development of the method for rapid detection of hazardous atmospheric pollution of cities with the help of recurrence measures. Eastern-European Journal of Enterprise Technologies, 1 (10 (97)), 29–35. doi: https://doi.org/10.15587/1729-4061.2019.155027
  8. Adeniji, A. E., Olusola, O. I., Njah, A. N. (2018). Comparative study of chaotic features in hourly wind speed using recurrence quantification analysis. AIP Advances, 8 (2), 025102. doi: https://doi.org/10.1063/1.4998674
  9. Wendi, D., Marwan, N., Merz, B. (2018). In Search of Determinism-Sensitive Region to Avoid Artefacts in Recurrence Plots. International Journal of Bifurcation and Chaos, 28 (01), 1850007. doi: https://doi.org/10.1142/s0218127418500074
  10. Donner, R. V., Balasis, G., Stolbova, V., Georgiou, M., Wiedermann, M., Kurths, J. (2019). Recurrence‐Based Quantification of Dynamical Complexity in the Earth's Magnetosphere at Geospace Storm Timescales. Journal of Geophysical Research: Space Physics, 124 (1), 90–108.
  11. Garcia-Ceja, E., Uddin, M. Z., Torresen, J. (2018). Classification of Recurrence Plots’ Distance Matrices with a Convolutional Neural Network for Activity Recognition. Procedia Computer Science, 130, 157–163. doi: https://doi.org/10.1016/j.procs.2018.04.025
  12. Neves, F. M., Viana, R. L., Pie, M. R. (2017). Recurrence analysis of ant activity patterns. PLOS ONE, 12 (10), e0185968. doi: https://doi.org/10.1371/journal.pone.0185968
  13. Ozken, I., Eroglu, D., Breitenbach, S. F. M., Marwan, N., Tan, L., Tirnakli, U., Kurths, J. (2018). Recurrence plot analysis of irregularly sampled data. Physical Review E, 98 (5). doi: https://doi.org/10.1103/physreve.98.052215
  14. Thiel, M., Romano, M. C., Kurths, J., Meucci, R., Allaria, E., Arecchi, F. T. (2002). Influence of observational noise on the recurrence quantification analysis. Physica D: Nonlinear Phenomena, 171 (3), 138–152. doi: https://doi.org/10.1016/s0167-2789(02)00586-9
  15. Schinkel, S., Dimigen, O., Marwan, N. (2008). Selection of recurrence threshold for signal detection. The European Physical Journal Special Topics, 164 (1), 45–53. doi: https://doi.org/10.1140/epjst/e2008-00833-5
  16. Eroglu, D., Marwan, N., Stebich, M., Kurths, J. (2018). Multiplex recurrence networks. Physical Review E, 97 (1). doi: https://doi.org/10.1103/physreve.97.012312
  17. Webber,, C. L., Ioana, C., Marwan, N. (Eds.) (2016). Recurrence Plots and Their Quantifications: Expanding Horizons. Springer Proceedings in Physics. doi: https://doi.org/10.1007/978-3-319-29922-8
  18. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Borodych, P. (2018). Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern-European Journal of Enterprise Technologies, 3 (9 (93)), 34–40. doi: https://doi.org/10.15587/1729-4061.2018.133127
  19. Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Design of fire detectors capable of self-adjusting by ignition. Eastern-European Journal of Enterprise Technologies, 4 (9 (88)), 53–59. doi: https://doi.org/10.15587/1729-4061.2017.108448
  20. Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Research into dynamics of setting the threshold and a probability of ignition detection by self­adjusting fire detectors. Eastern-European Journal of Enterprise Technologies, 5 (9 (89)), 43–48. doi: https://doi.org/10.15587/1729-4061.2017.110092
  21. Pospelov, B., Krainiukov, O., Savchenko, A., Harbuz, S., Cherkashyn, O., Shcherbak, S. et. al. (2019). Development of the method operative calculation the recurrent diagrams for non-regular measurements. Eastern-European Journal of Enterprise Technologies, 5 (4 (101)), 26–33. doi: https://doi.org/10.15587/1729-4061.2019.181516
  22. Korn, G., Korn, T. (1973). Spravochnik po matematike. Moscow: Nauka.
  23. Pospelov, B., Andronov, V., Meleshchenko, R., Danchenko, Y., Artemenko, I., Romaniak, M. et. al. (2019). Construction of methods for computing recurrence plots in space with a scalar product. Eastern-European Journal of Enterprise Technologies, 3 (4 (99)), 37–44. doi: https://doi.org/10.15587/1729-4061.2019.169887
  24. Pospelov, B., Andronov, V., Rybka, E., Popov, V., Semkiv, O. (2018). Development of the method of frequency­temporal representation of fluctuations of gaseous medium parameters at fire. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 44–49. doi: https://doi.org/10.15587/1729-4061.2018.125926
  25. Kondratenko, O. M., Vambol, S. O., Strokov, O. P., Avramenko, A. M. (2015). Mathematical model of the efficiency of diesel particulate matter filter. Scientific Bulletin of National Mining University, 6, 55–61.
  26. Vasiliev, M. I., Movchan, I. O., Koval, O. M. (2014). Diminishing of ecological risk via optimization of fire-extinguishing system projects in timber-yards. Scientific Bulletin of National Mining University, 5, 106–113.
  27. Dubinin, D., Korytchenko, K., Lisnyak, A., Hrytsyna, I., Trigub, V. (2017). Numerical simulation of the creation of a fire fighting barrier using an explosion of a combustible charge. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 11–16. doi: https://doi.org/10.15587/1729-4061.2017.114504
  28. Semko, A., Rusanova, O., Kazak, O., Beskrovnaya, M., Vinogradov, S., Gricina, I. (2015). The use of pulsed high-speed liquid jet for putting out gas blow-out. The International Journal of Multiphysics, 9 (1), 9–20. doi: https://doi.org/10.1260/1750-9548.9.1.9
  29. Kustov, M. V., Kalugin, V. D., Tutunik, V. V., Tarakhno, E. V. (2019). Physicochemical principles of the technology of modified pyrotechnic compositions to reduce the chemical pollution of the atmosphere. Voprosy khimii i khimicheskoi tekhnologii, 1, 92–99. doi: https://doi.org/10.32434/0321-4095-2019-122-1-92-99
  30. Vasyukov, A., Loboichenko, V., Bushtec, S. (2016). Identification of bottled natural waters by using direct conductometry. Ecology Environment and Conservation, 22 (3), 1171–1176.
  31. Pospelov, B., Rybka, E., Togobytska, V., Meleshchenko, R., Danchenko, Y., Butenko, T. et. al. (2019). Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4 (10 (100)), 22–29. doi: https://doi.org/10.15587/1729-4061.2019.176579

Downloads

Published

2019-12-17

How to Cite

Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Karpets, K., Pirohov, O., Semenyshyna, I., Kapitan, R., Promska, A., & Horbov, O. (2019). Development of the correlation method for operative detection of recurrent states. Eastern-European Journal of Enterprise Technologies, 6(4 (102), 39–46. https://doi.org/10.15587/1729-4061.2019.187252

Issue

Section

Mathematics and Cybernetics - applied aspects