Development of computational method for matched filtration with analytical profile of the blurred digital image

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.265309

Keywords:

matched filter, transfer function, OLS evaluation, Gaussian, image processing

Abstract

A computational method for matched filtration with analytical profile of the blurred digital image of the investigated objects on digital frames has been developed. Such «blurred» objects can be the result of an involuntary shift of a fixed camera, an incorrect choice of the mode of guiding the telescope (diurnal or object tracking) or a failure of the diurnal tracking.

This computational method is based on the analytical selection of the typical form of the object’s image, as well as on the choice of special parameters for the transfer function of the matched filter for the blurred digital image, which makes it possible to evaluate the required parameters of the blurred digital image.

In addition, determining the number of Gaussians of the object’s image makes it possible to perform the most accurate assessment of the initial approximation of the parameters of their shape. Thus, matched filtration makes it possible to highlight the investigated objects with a blurred image of a typical shape against the background of substrate noise. Using the computational method of matched filtration makes it possible to improve the segmentation of images of reference objects on the frame and reduce the number of false detections.

The developed computational method for matched filtration with analytical profile of the blurred digital image of the investigated objects on the frames was tested in practice as part of the research of the CoLiTec project. It was implemented in the intraframe processing unit of the Lemur software for the operational automated detection of new and observation of known objects with a weak brightness. Owing to the Lemur software using and the proposed computational method introduced into it, more than 500,000 measurements of the various investigated objects were successfully processed and identified.

Author Biographies

Sergii Khlamov, SoftServe

PhD, Test Automation Lead

Vladimir Vlasenko, National Space Facilities Control and Test Center

PhD

Space Research and Communications Center

Vadym Savanevych, Kharkiv National University of Radio Electronics

Doctor of Technical Sciences, Professor

Department of Systems Engineering

Oleksandr Briukhovetskyi, National Space Facilities Control and Test Center

PhD

Western Center of Radiotechnical Surveillance

Tetiana Trunova, Kharkiv National University of Radio Electronics

Engineer

Department of Media Systems and Technologies

Victor Chelombitko, Kharkiv National University of Radio Electronics

PhD, Associate Professor

Department of Media Systems and Technologies

Iryna Tabakova, Kharkiv National University of Radio Electronics

PhD, Associate Professor

Department of Media Systems and Technologies

References

  1. David, P. S., Miller, P. L. (2014). Defending Against Asteroids and Comets. Handbook of Cosmic Hazards and Planetary Defense. Springer. doi: https://doi.org/10.1007/978-3-319-03952-7_59
  2. Mykhailova, L., Savanevych, V., Sokovikova, N., Bezkrovniy, M., Khlamov, S., Pogorelov, A. (2014). Method of maximum likelihood estimation of compact group objects location on CCD-frame. Eastern-European Journal of Enterprise Technologies, 5 (4 (71)), 16–22. doi: https://doi.org/10.15587/1729-4061.2014.28028
  3. Savanevych, V. E., Khlamov, S. V., Akhmetov, V. S., Briukhovetskyi, A. B., Vlasenko, V. P., Dikov, E. N. et. al. (2022). CoLiTecVS software for the automated reduction of photometric observations in CCD-frames. Astronomy and Computing,40, 100605. doi: https://doi.org/10.1016/j.ascom.2022.100605
  4. Cavuoti, S., Brescia, M., Longo, G. (2012). Data mining and knowledge discovery resources for astronomy in the Web 2.0 age. SPIE Astronomical Telescopes and Instrumentation, Software and Cyberinfrastructure for Astronomy II, 8451. doi: https://doi.org/10.1117/12.925321
  5. Vavilova, I., Pakuliak, L., Babyk, I., Elyiv, A., Dobrycheva, D., Melnyk, O. (2020). Surveys, Catalogues, Databases, and Archives of Astronomical Data. Knowledge Discovery in Big Data from Astronomy and Earth Observation. Elsevier, 57–102. doi: https://doi.org/10.1016/B978-0-12-819154-5.00015-1
  6. Zhang, Y., Zhao, Y., Cui, C. (2002). Data mining and knowledge discovery in database of astronomy. Progress in Astronomy, 20 (4).
  7. Khlamov, S., Savanevych, V. (2020). Big Astronomical Datasets and Discovery of New Celestial Bodies in the Solar System in Automated Mode by the CoLiTec Software. Knowledge Discovery in Big Data from Astronomy and Earth Observation, 331–345. doi: https://doi.org/10.1016/b978-0-12-819154-5.00030-8
  8. Khlamov, S., Savanevych, V., Briukhovetskyi, O., Oryshych, S. (2016). Development of computational method for detection of the object’s near-zero apparent motion on the series of ccd-frames. Eastern-European Journal of Enterprise Technologies, 2 (9 (80)), 41–48. doi: https://doi.org/10.15587/1729-4061.2016.65999
  9. Smith, G. E. (2010). The invention and early history of the CCD. Reviews of modern physics, 82 (3), 2307–2312. doi: https://doi.org/10.1103/RevModPhys.82.2307
  10. Kuz'min, S. Z. (2000). Tsifrovaya radiolokatsiya. Vvedenie v teoriyu. Kyiv: Izdatel'stvo KvіTs, 428.
  11. Klette, R. (2014). Concise computer vision. An Introduction into Theory and Algorithms. Springer, 429. doi: https://doi.org/10.1007/978-1-4471-6320-6
  12. Minaee, S., Boykov, Y. Y., Porikli, F., Plaza, A. J., Kehtarnavaz, N., Terzopoulos, D. (2021). Image Segmentation Using Deep Learning: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence. doi: https://doi.org/10.1109/tpami.2021.3059968
  13. Akhmetov, V., Khlamov, S., Tabakova, I., Hernandez, W., Hipolito, J. I. N., Fedorov, P. (2019). New approach for pixelization of big astronomical data for machine vision purpose. IEEE 28th International Symposium on Industrial Electronics (ISIE). doi: https://doi.org/10.1109/isie.2019.8781270
  14. Bishop, C. M. (2013). Model-based machine learning. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371 (1984), 20120222. doi: https://doi.org/10.1098/rsta.2012.0222
  15. Dadkhah, M., Lyashenko, V. V., Deineko, Z. V., Shamshirband, S., Jazi, M. D. (2019). Methodology of wavelet analysis in research of dynamics of phishing attacks. International Journal of Advanced Intelligence Paradigms, 12 (3/4), 220. doi: https://doi.org/10.1504/ijaip.2019.098561
  16. Steger, C., Ulrich, M., Wiedemann, C. (2018). Machine vision algorithms and applications. John Wiley & Sons, 516.
  17. Kobzar', A. I. (2006). Prikladnaya matematicheskaya statistika. Dlya inzhenerov i nauchnykh rabotnikov. Moscow: FIZMATLI, 816.
  18. Burger, W., Burge, M. (2009). Principles of digital image processing: core algorithms. Springer, 332. doi: https://doi.org/10.1007/978-1-84800-195-4
  19. Gonzalez, R., Woods, R. (2018). Digital image processing. Pearson.
  20. Rubin, B. (2015). Encyclopedia of Mathematics and its Application. Introduction to Radon transforms. With Elements of Fractional Calculus and Harmonic Analysis. Cambridge University Press, 596.
  21. Wang, J., Cai, D., Wen, Y. (2011). Comparison of matched filter and dechirp processing used in Linear Frequency Modulation. 2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering. doi: https://doi.org/10.1109/ccieng.2011.6008069
  22. Jorgensen, B. (1982). Statistical properties of the generalized inverse Gaussian distribution. Springer, 188. doi: https://doi.org/10.1007/978-1-4612-5698-4
  23. Lemur software. Available at: https://www.colitec.space
  24. Kashuba, S., Tsvetkov, M., Bazyey, N., Isaeva, E., Golovnia, V. (2018). The Simeiz plate collection of the ODESSA astronomical observatory. 11th Bulgarian-Serbian Astronomical Conference, 207–216. Available at: https://www.researchgate.net/publication/331386063_THE_SIMEIZ_PLATE_COLLECTION_OF_THE_ODESSA_ASTRONOMICAL_OBSERVATORY
  25. Molotov, I., Agapov, V., Kouprianov, V. et. al. (2009). ISON worldwide scientific optical network. Fifth European Conference on Space Debris. Available at: https://www.researchgate.net/publication/234251876_ISON_Worldwide_Scientific_Optical_Network
  26. Mingmuang, Y., Tummuangpak, P., Asanok, K., Jaroenjittichai, P. (2019). The mass distribution and the rotation curve of the Milky Way Galaxy using NARIT 4.5 m small radio telescope and the 2.3 m Onsala radio telescope. Journal of Physics: Conference Series, 1380 (1), 012028. doi: https://doi.org/10.1088/1742-6596/1380/1/012028
  27. Rao, K. R., Kim, D. N., Hwang, J.-J. (2010). Fast Fourier Transform - Algorithms and Applications. Springer, 426. doi: https://doi.org/10.1007/978-1-4020-6629-0
  28. Haynal, S., Haynal, H. (2011). Generating and searching families of FFT algorithms. Journal on Satisfiability, Boolean Modeling and Computation, 7 (4), 145–187. doi: https://doi.org/10.3233/sat190084
  29. Ivanov, M. T., Sergienko, A. B., Ushakov, V. N. (2021). Radiotekhnicheskie tsepi i signaly. Sankt-Peterburg: Piter, 336.
  30. Belov, L. A. (2021). Radioelektronika. Formirovanie stabil'nykh chastot i signalov. Moscow: Izdatel'stvo Yurayt, 268.
  31. Soyfer, V. A. (Ed.) (2003). Metody komp'yuternoy obrabotki izobrazheniy. Moscow: Fizmatlit, 784.
  32. Le, D.-H., Pham, C.-K., Nguyen, T. T. T., Bui, T. T. (2012). Parameter extraction and optimization using Levenberg-Marquardt algorithm. 2012 Fourth International Conference on Communications and Electronics (ICCE). doi: https://doi.org/10.1109/cce.2012.6315945
  33. Sergienko, A. B. (2011). Tsifrovaya obrabotka signalov. Sankt-Peterburg: BKhV-Peterburg, 768.
  34. Khlamov, S., Savanevych, V., Briukhovetskyi, O., Pohorelov, A., Vlasenko, V., Dikov, E. (2018). CoLiTec Software for the Astronomical Data Sets Processing. 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP). doi: https://doi.org/10.1109/dsmp.2018.8478504
  35. Khlamov, S., Savanevych, V., Briukhovetskyi, O., Tabakova, I., Trunova, T. (2022). Data Mining of the Astronomical Images by the CoLiTec Software. CEUR Workshop Proceedings, 3171, 1043–1055. Available at: http://ceur-ws.org/Vol-3171/paper75.pdf
  36. Akhmetov, V., Khlamov, S., Khramtsov, V., Dmytrenko, A. (2019). Astrometric Reduction of the Wide-Field Images. Advances in Intelligent Systems and Computing, 896–909. doi: https://doi.org/10.1007/978-3-030-33695-0_58
  37. Akhmetov, V., Khlamov, S., Dmytrenko, A. (2018). Fast Coordinate Cross-Match Tool for Large Astronomical Catalogue. Advances in Intelligent Systems and Computing III, 3–16. doi: https://doi.org/10.1007/978-3-030-01069-0_1
  38. Akhmetov, V., Khlamov, S., Savanevych, V., Dikov, E. (2019). Cloud Computing Analysis of Indian ASAT Test on March 27, 2019. 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S&T). doi: https://doi.org/10.1109/picst47496.2019.9061243
  39. Orbital height profile of MICROSAT-R. Available at: https://heavens-above.com/OrbitHeight.aspx?satid=43947&startMJD=58484.0
Development of computational method for matched filtration with analytical profile of the blurred digital image

Downloads

Published

2022-10-30

How to Cite

Khlamov, S., Vlasenko, V., Savanevych, V., Briukhovetskyi, O., Trunova, T., Chelombitko, V., & Tabakova, I. (2022). Development of computational method for matched filtration with analytical profile of the blurred digital image . Eastern-European Journal of Enterprise Technologies, 5(4(119), 24–32. https://doi.org/10.15587/1729-4061.2022.265309

Issue

Section

Mathematics and Cybernetics - applied aspects