Obtaning of nanodispersed ferriferous pigments using contact nonequilibrium plasma

Authors

  • Александр Андреевич Пивоваров Ukrainian State Chemical Technology University Gagarin, 8, Dnepropetrovsk, 49005, Ukraine https://orcid.org/0000-0001-7849-0722
  • Лилия Анатольевна Фролова Ukrainian State Chemical Technology University pr, 8, Dnepropetrovsk, 49005, Ukraine
  • Елена Григорьевна Цьопич Ukrainian State Chemical Technology University Gagarin, 8, Dnepropetrovsk, 49005, Ukraine
  • Маргарита Ивановна Воробьева Ukrainian State Chemical Technology University Gagarin, 8, Dnepropetrovsk, 49005, Ukraine https://orcid.org/0000-0001-9686-736X

DOI:

https://doi.org/10.15587/1729-4061.2014.27705

Keywords:

pigments, magnetite, goethite, obtaining, contact nonequilibrium low-temperature plasma

Abstract

The paper shows the efficiency of using a contact nonequilibrium low-temperature plasma for producing nanodispersed pigments of different colours. The influence of the initial pH, treatment time and electrical parameters of the plasma-chemical synthesis on the main technological properties of the pigments was determined. Colour characteristics of the obtained products were studied. Their phase composition was analyzed. According to the data on the dependence of the phase composition of the products formed by the oxidation of iron hydroxide (II) on the synthesis parameters, the system diagram was created to display predominant areas of each phase formation in the pH plasma treatment time coordinates.

The main trends in changing the phase composition of the solid phase from the synthesis conditions were determined during the studies.

It was found that the final product of iron hydroxide (II) oxidizing depending on the synthesis parameters can be oxyhydroxide of iron (III -a) − modification, magnetite or iron hydroxide (II).

A phase composition of the obtained product depends largely on the solution’s pH. With increasing the pH from 6 to 10 under the same synthesis parameters, such sequence of phase formation is indicated: Fe(OH)2 − a − FeOOH − Fe3O4. With the further increase of the solution’s pH, Fe3O4 is formed.

Author Biographies

Александр Андреевич Пивоваров, Ukrainian State Chemical Technology University Gagarin, 8, Dnepropetrovsk, 49005

Doctor of Technical Sciences,

Professor Department of Inorganic Materials Technology and Ecolog

Лилия Анатольевна Фролова, Ukrainian State Chemical Technology University pr, 8, Dnepropetrovsk, 49005

Candidate of Technical Sciences, Associate Professor

Department of Inorganic Materials Technology and Ecology

Елена Григорьевна Цьопич, Ukrainian State Chemical Technology University Gagarin, 8, Dnepropetrovsk, 49005

Graduate Student

Department of inorganic substances and Ecology

Маргарита Ивановна Воробьева, Ukrainian State Chemical Technology University Gagarin, 8, Dnepropetrovsk, 49005

Graduate Student,

Department of inorganic substances and Ecology

References

  1. 1. Jolivet, J.-P., Tronc, E., Chanéac, C. (2006, June). Iron oxides: From molecular clusters to solid. A nice example of chemical versatility. Comptes Rendus Geoscience, Vol. 338, № 6-7, 488–497. http://dx.doi.org/10.1016/j.crte.2006.04.014

    2. Kotsyubynsky, V. О., Mokliak, V. V., Grubiak, A. B., Kolkovsky, P. I., Al-Saedi Abdul Halek Zamil. (2013). Nanocomposite Materials a-Fe2O3/ g-Fe2O3: Synthesis,Crystaland Magnetic Microstructure, Morphology. Journal Of Nano- and Electronic Physics, Vol. 5, No 1, 01024.

    3. Gilbert, F., Refait, P., Lévêque, F., Remazeilles, C., Conforto, E. (2008, August). Synthesis of goethite from Fe(OH)2 precipitates: Influence of Fe(II) concentration and stirring speed. Journal of Physics and Chemistry of Solids, Vol. 69, № 8, 2124–2130. http://dx.doi.org/10.1016/j.jpcs.2008.03.010

    4. Iliukha, M. H., Barsova, Z. V., Tsykhanovska, I. V., Tymofeieva, V. P., Vedernikova, I. O.; Ukrainian Engineering and Pedagogical Academy. (10.11.2010). Sposib otrymannia mahnetytu. Pat. UА № 54284, MPK S 01 G 49/08. № u 201002474; appl. 05.03.2010, Biul. № 21, 3 р.

    5. Iliukha, M. H., Barsova, Z. V., Vedernykova, I. O., Tsykhanovska, I. V., Timofeieva, V. P. (2009). Nanokhimichna tekhnolohiia mahnetytu. Khimichna promyslovist Ukrainy, № 5, 37-41.

    6. Iliuha, N., Barsova, Z., Tsihanovskaia, I., Kovalenko, V. (2010). Tehnologiia proizvodstva i pokazateli kachestva pischevoy dobavki na osnove magnetita. Eastern-European Journal Of Enterprise Technologies, 6(10(48)), 32-35.

    7. Hosseini-Zoria, M., Bondiolib, F., Manfredinib, T., Taheri-Nassaja, E. (2008). Effect of synthesis parameters on a hematite–silica red pigment obtained using a coprecipitation route. Dyes and Pigments, Vol. 77, № 1, 53–58. http://dx.doi.org/10.1016/j.dyepig.2007.03.006

    8. Legodi, M. A., de Waal, D. (2007). The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste. Dyes and Pigments, Vol. 74, № 1, 161–168. http://dx.doi.org/10.1016/j.dyepig.2006.01.038

    9. Mohapatra, M., Anand, S. (2011, February 24). Synthesis and applications of nano-structured iron oxides/hydroxides – a review. International Journal of Engineering, Science and Technology, Vol. 2, № 8, 127-146. http://dx.doi.org/10.4314/ijest.v2i8.63846

    10. Christensen, A. N., Jensen, T. R., Bahl, C. R. H., DiMasi, E. (2007, April). Nano size crystals of goethite, α-FeOOH: Synthesis and thermal transformation. Journal of Solid State Chemistry, Vol. 180, № 4, 1431–1435. http://dx.doi.org/10.1016/j.jssc.2007.01.032

    11. Babes, L., Denizot, B., Tanguy, G., Le Jeune, J. J., Jallet, P. (1999, April 15). Synthesis of Iron Oxide Nanoparticles Used as MRI Contrast Agents: A Parametric Study. Journal of Colloid and Interface Science, Vol. 212, № 2, 474–482. http://dx.doi.org/10.1006/jcis.1998.6053

    12. Babincova, M., Babinec, P., Bergmann, C. (2001). High-gradient magnetic capture of ferrofluids: implications for drug targeting and tumor embolization. Naturforsch (Sect C), Vol. 56(9-10), 909-911.

    13. Baker, A. S. J., Brown, A. S. C., Edwards, M. A., Hargreaves, J. S. J., Kiely, C. J., Meagher, A., Pankhurst, Q. A. (2000). A structural study of haematite samples prepared from sulfated goethite precursors: the generation of axial mesoporous voids. Journal of Materials Chemistry, Vol. 10, № 3, 761–766. http://dx.doi.org/10.1039/a908346d

    14. Frolova, L. A. (2012). Usloviia polucheniia chernogo zhelezooksidnogo pigmenta iz otrabotannyh travil'nyh rastvorov. Metallurgicheskaia i gornorudnaia promyshlennost', №4, 125-127.

    15. Baldrian, P., Merhautová, V., Gabriel, J., Nerud, F., Stopka, P., Hrubý, M., Beneš, M. J. (2006, July). Decolorization of synthetic dyes by hydrogen peroxide with heterogeneous catalysis by mixed iron oxides. Applied Catalysis B: Environmental, Vol. 66, № 3-4, 258–264. http://dx.doi.org/10.1016/j.apcatb.2006.04.001

    16. Bang, J. H., Suslick, K. S. (2007, February). Sonochemical Synthesis of Nanosized Hollow Hematite. Journal of the American Chemical Society, Vol. 129, № 8, 2242–2243. http://dx.doi.org/10.1021/ja0676657

    17. Pivovarov, A. A., Kravchenko, A. V., Tischenko, A. P., Nikolenko, N. V. at el. (2013). Kontaktnaia neravnovesnaia plazma kak instrument dlia obrabotki vody i vodnyh rastvorov. Teoriia i praktika. Zhurnal Rossiyskogo himicheskogo obschestva im. D. I. Mendeleeva, T. LVII, № 3-4, 134–145.

    18. Kravchenko, A. V., Kublanovskiy, V. S., Pivovarov, A. A., Pustovoytenko, V. P. (2013). Nizkotemperaturnyy ielektroliz: teoriia i praktika. Dnepropetrovsk: «Aktsent PP», 229.

Published

2014-10-13

How to Cite

Пивоваров, А. А., Фролова, Л. А., Цьопич, Е. Г., & Воробьева, М. И. (2014). Obtaning of nanodispersed ferriferous pigments using contact nonequilibrium plasma. Eastern-European Journal of Enterprise Technologies, 5(6(71), 17–21. https://doi.org/10.15587/1729-4061.2014.27705

Issue

Section

Technology organic and inorganic substances