Neutronic design of small modular long­life pressurized water reactor using thorium carbide fuel at a power level of 300–500 MWth

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.290996

Keywords:

thorium, core design, Doppler reactivity, void fraction coefficient, CITATION

Abstract

This study presents the neutronic design of a small modular long­life Pressurized Water Reactor (PWR) using thorium carbide fuel with 233U fissile material. The target optimization for this study is a reactor designed to operate for 20 years, with excess reacti­vity throughout the reactor operational cycle consistently below 1.00 % dk/k. The analysis involves dividing the reactor core into three fuel regions with 233U enrichment levels ranging from 3 % to 8 %, with a 1 % difference for each fuel region. To achieve optimum conditions, 231Pa was randomly added to the fuel. The fuel volume fraction in this design varied from 30 % to 65 %, with a 5 % incremental variation. Power level variations are also studied within the 300–500 MWth with increments of 50 MWth. Calculations were performed using the Standard Reactor Analysis Code (SRAC) program with the PIJ and CITATION modules for cell and core calculations utilizing JENDL­4.0 nuclide data. Neutronic calculations indicate that the fuel with a 60 % volume fraction achieves optimum conditions at a power level of 300 MWth. The best performance was observed with a fuel volume fraction of 65 %, reaching optimum conditions across power levels ranging from 300 to 500 MWth. For the fuel with the best performance, the power density distributions for low and high power levels follow the same pattern radially and axially. The power peaking factor (PPF) for all fuel configurations approaching the optimum conditions remains below two, a safe limit for the PWR. Other neutronic safety parameters, such as the Doppler coefficient and void fraction coefficient, also stay within the safe limits for the PWR, with both values remaining negative throughout the reactor operational cycle

Author Biographies

Boni Pahlanop Lapanporo, Institut Teknologi Bandung; Universitas Tanjungpura

Doctoral Student

Department of Physics

Assistant Professor

Department of Physics

Zaki Su’ud, Institut Teknologi Bandung

Professor

Department of Physics; Nuclear Physics & Biophysics Research Division

Asril Pramutadi Andi Mustari, Institut Teknologi Bandung

Assistant Professor

Department of Physics; Nuclear Physics & Biophysics Research Division

References

  1. Nuclear Power in the World Today. Available at: https://world-nuclear.org/information-library/current-and-future-generation/nuclear-power-in-the-world-today.aspx
  2. Cummins, W. E., Matzie, R. (2018). Design evolution of PWRs: Shippingport to generation III+. Progress in Nuclear Energy, 102, 9–37. https://doi.org/10.1016/j.pnucene.2017.08.008
  3. Morales Pedraza, J. (2017). Small Modular Reactors for Electricity Generation. Springer International Publishing. https://doi.org/10.1007/978-3-319-52216-6
  4. Mittag, S., Kliem, S. (2011). Burning plutonium and minimizing radioactive waste in existing PWRs. Annals of Nuclear Energy, 38 (1), 98–102. https://doi.org/10.1016/j.anucene.2010.08.012
  5. Li, J., Li, X., Cai, J. (2021). Neutronic characteristics and feasibility analysis of micro-heterogeneous duplex ThO2-UO2 fuel pin in PWR. Nuclear Engineering and Design, 382, 111382. https://doi.org/10.1016/j.nucengdes.2021.111382
  6. Galahom, A. A., Mohsen, M. Y. M., Amrani, N. (2022). Explore the possible advantages of using thorium-based fuel in a pressurized water reactor (PWR) Part 1: Neutronic analysis. Nuclear Engineering and Technology, 54 (1), 1–10. https://doi.org/10.1016/j.net.2021.07.019
  7. Mirvakili, S. M., Alizadeh Kavafshary, M., Joze Vaziri, A. (2015). Comparison of neutronic behavior of UO2 , (Th- 233 U)O 2 and (Th- 235 U)O2 fuels in a typical heavy water reactor. Nuclear Engineering and Technology, 47 (3), 315–322. https://doi.org/10.1016/j.net.2014.12.014
  8. Baldova, D., Fridman, E., Shwageraus, E. (2014). High conversion Th-U233 fuel for current generation of PWRs: Part I – Assembly level analysis. Annals of Nuclear Energy, 73, 552–559. https://doi.org/10.1016/j.anucene.2014.05.017
  9. Gorton, J. P., Collins, B. S., Nelson, A. T., Brown, N. R. (2019). Reactor performance and safety characteristics of ThN-UN fuel concepts in a PWR. Nuclear Engineering and Design, 355, 110317. https://doi.org/10.1016/j.nucengdes.2019.110317
  10. Mohsen, M. Y. M., Abdel-Rahman, M. A. E., Galahom, A. A. (2021). Ensuring the possibility of using thorium as a fuel in a pressurized water reactor (PWR). Nuclear Science and Techniques, 32 (12). https://doi.org/10.1007/s41365-021-00981-0
  11. Maiorino, J. R., Stefani, G. L., Moreira, J. M. L., Rossi, P. C. R., Santos, T. A. (2017). Feasibility to convert an advanced PWR from UO2 to a mixed U/ThO2 core – Part I: Parametric studies. Annals of Nuclear Energy, 102, 47–55. https://doi.org/10.1016/j.anucene.2016.12.010
  12. Akbari-Jeyhouni, R., Rezaei Ochbelagh, D., Maiorino, J. R., D’Auria, F., Stefani, G. L. de (2018). The utilization of thorium in Small Modular Reactors – Part I: Neutronic assessment. Annals of Nuclear Energy, 120, 422–430. https://doi.org/10.1016/j.anucene.2018.06.013
  13. Lau, C. W., Nylén, H., Demazière, C., Sandberg, U. (2014). Reducing axial offset and improving stability in PWRs by using uranium–thorium fuel. Progress in Nuclear Energy, 76, 137–147. https://doi.org/10.1016/j.pnucene.2014.05.016
  14. Vaidyanathan, S. (2021). Transitioning to a Sustainable Thorium Fuel Cycle in Pressurized Water Reactors Using Bimetallic Thorium-Zirconium Alloy Cladding. Nuclear Technology, 207 (12), 1793–1809. https://doi.org/10.1080/00295450.2020.1846987
  15. Peakman, A., Owen, H., Abram, T. (2021). Core design and fuel behaviour of a small modular pressurised water reactor using (Th,U)O2 fuel for commercial marine propulsion. Progress in Nuclear Energy. https://doi.org/10.1016/j.pnucene.2021.103966
  16. Subkhi, M. N., Su’ud, Z., Waris, A. (2013). Netronic Design of Small Long-Life PWR Using Thorium Cycle. Advanced Materials Research, 772, 524–529. https://doi.org/10.4028/www.scientific.net/amr.772.524
  17. Syarifah, R. D., Aula, M. H., Ardianingrum, A., Janah, L. N., Maulina, W. (2022). Comparison of thorium nitride and uranium nitride fuel on small modular pressurized water reactor in neutronic analysis using SRAC code. Eastern-European Journal of Enterprise Technologies, 2 (8 (116)), 21–28. https://doi.org/10.15587/1729-4061.2022.255849
  18. Kim, T. K., Grandy, C., Hill, R. N. (2009). Carbide and Nitride Fuels for Advanced Burner Reactor. International Conference on Fast Reactors and Related Fuel Cycles (FR09) - Challenges and Opportunities. Available at: https://inis.iaea.org/collection/NCLCollectionStore/_Public/41/070/41070109.pdf
  19. Lapanporo, B. P., Su’ud, Z. (2022). Parametric Study of Thorium Fuel Utilization on Small Modular Pressurized Water Reactors (PWR). Journal of Physics: Conference Series, 2243 (1), 012062. https://doi.org/10.1088/1742-6596/2243/1/012062
  20. Subki, I., Pramutadi, A., Rida, S. N. M., Su’ud, Z., Eka Sapta, R., Muh. Nurul, S. et al. (2008). The utilization of thorium for long-life small thermal reactors without on-site refueling. Progress in Nuclear Energy, 50 (2-6), 152–156. https://doi.org/10.1016/j.pnucene.2007.10.029
  21. Dobuchi, N., Takeda, S., Kitada, T. (2016). Study on the relation between Doppler reactivity coefficient and resonance integrals of Thorium and Uranium in PWR fuels. Annals of Nuclear Energy, 90, 191–194. https://doi.org/10.1016/j.anucene.2015.11.018
  22. Functional Design of Reactivity Control Systems. AP1000 Design Control Document. Available at: https://www.nrc.gov/docs/ML1117/ML11171A448.pdf
Neutronic design of small modular long-life pressurized water reactor using thorium carbide fuel at a power level of 300–500 MWth h

Downloads

Published

2024-02-28

How to Cite

Lapanporo, B. P., Su’ud, Z., & Mustari, A. P. A. (2024). Neutronic design of small modular long­life pressurized water reactor using thorium carbide fuel at a power level of 300–500 MWth. Eastern-European Journal of Enterprise Technologies, 1(8 (127), 18–27. https://doi.org/10.15587/1729-4061.2024.290996

Issue

Section

Energy-saving technologies and equipment