Method for determining the bulk temperature of the acheson graphitization furnace core

Authors

  • Евгений Николаевич Панов National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremogy ave., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-4885-2777
  • Антон Янович Карвацкий National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremogy ave., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0003-2421-4700
  • Сергей Владимирович Лелека National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremogy ave., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-4372-9454
  • Тарас Валериевич Лазарев National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremogy ave., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-8260-1683
  • Анатолий Юрьевич Педченко National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremogy ave., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-5065-5003
  • Денис Григорович Швачко National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremogy ave., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-6031-1490

DOI:

https://doi.org/10.15587/1729-4061.2015.43721

Keywords:

graphitization, Acheson furnace, gasification, energy loss, temperature, energy balance

Abstract

In order to reduce energy consumption in graphitization of electrode products in Acheson furnaces, a method for rapid assessment of the bulk temperature of the furnace core, which is based on the furnace energy balance equation and takes into account active energy loss at the furnace entrance; heat loss from the core surface; heat loss and moisture evaporation; heat loss in the core booster gasification process was developed. The unknown coefficients of the method - the temperature dependences of the effective heat transfer coefficient from the core surface and the proportionality factor, which takes into account active energy loss in the direct core insulation heating, were determined by calculation using the verified numerical model of heat-electro-mechanical state of the Acheson furnace. Analysis of the results showed that the nature of temperature dependence of the proportionality coefficient, which takes into account active energy loss in the direct core insulation heating is similar to the temperature dependence of the specific electrical resistivity of the furnace core (core booster). Verification of the developed method showed good agreement with the numerical simulation results. The developed method was tested in conditions of the electrode manufacturer PJSC "Ukrgrafit", Ukraine and has allowed to reduce specific energy consumption while maintaining the necessary quality level of graphitized products.

Author Biographies

Евгений Николаевич Панов, National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremogy ave., 37, Kyiv, Ukraine, 03056

Doctor of Engineering, professor

The chemical, polymer and silicate machine engineering department

Антон Янович Карвацкий, National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremogy ave., 37, Kyiv, Ukraine, 03056

Doctor of Engineering, Professor

The chemical, polymer and silicate machine engineering department

Сергей Владимирович Лелека, National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremogy ave., 37, Kyiv, Ukraine, 03056

Candidate of Science, postdoctoral research fellow

Research center «Resource-saving technologies»

Тарас Валериевич Лазарев, National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremogy ave., 37, Kyiv, Ukraine, 03056

Postgraduate student

The chemical, polymer and silicate machine engineering department

Анатолий Юрьевич Педченко, National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremogy ave., 37, Kyiv, Ukraine, 03056

Postgraduate student

The chemical, polymer and silicate machine engineering department

Денис Григорович Швачко, National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremogy ave., 37, Kyiv, Ukraine, 03056

The chemical, polymer and silicate machine engineering department

References

  1. Chalyh, E. F. (1990), Oborudovanie jelektrodnyh zavodov. Moscow: Metallurgija, 238.
  2. Fialkov, A. S. (1979). Uglegrafitovye materially. Moscow: Jenergija, 320.
  3. Leleka, S. V., Panov, E. N., Karvaskyy, A. Ja. (2014), Teplojelektricheskoe sostojanie pechej grafitirovanija Achesona. Kiev, NTUU «KPI», 238.
  4. Znamerovskij, V. Ju. (1994), Matematicheskoe modelirovanie processa grafitacii. Moscow: Metallurgija, 64.
  5. Kuznecov, D. M., Fokin, V. P. (2001). Process grafitacii uglerodnyh materialov. Sovremennye metody issledovanija. Novocherkassk: JuRGTU, 132.
  6. Zhuchenko, A. I., Korzhyk, M. V., Kutuzov, S. V. (2013), Keruvannya protsesom hrafitatsiyi pry vyrobnytstvi elektrodnoyi produktsiyi. Kiev, NTUU «KPI», 224.
  7. Yarymbash, D. S. (2012). Identification of furnace loop electrical parameters of power graphitization furnaces. Elektrotehnіka і elektromehanіka, 1, 49–54.
  8. Panov, Ye. M., Karvatskyy, A. Ya., Korzhyk, M. V., Shylovych, I. L. and Leleka, S. V. (2011). Primenenie modeli Drakera-Pragera dlja issledovanija sostojanij pechi grafitacii. Vіsnik NTUU “KPІ”, Hіmіchna іnzhenerіja, ekologіja ta resursozberezhennja, 1 (7), 37–44.
  9. Shkulanov, E. E., Kuznecov, D. M. (2000). Osobennosti modelirovanija temperaturnyh polej v pechah grafitacii prjamogo nagreva. Matematicheskie metody v tehnike i tehnologijah MMTT-2000, 3, 198–199.
  10. Panov, Ye. M., Kutuzov, S. V., Leleka, S. V., Shilovich, I. L. and Bozhenko, M. F. (2007). Raschetno-jeksperimental'noe opredelenie temperaturnyh polej kerna v P-obraznyh pechah grafitacii postojannogo toka. Promyshlennaja teplotehnika, 2, 22–28.
  11. Panov, Ye. M., Kutuzov, S. V., Urazlyna, O. Yu., Leleka, S. V., Shylovych, I. L., Bozhenko, M. F., Korzhyk, M. V. (2007), Sposib vyznachennya serednoyi temperatury zahotovok v pechi hrafitatsiyi. UA patent No. 23,422. Kiev.
  12. Panov, Ye. M., Karvatskyy, A. Ya., Korzhyk, M. V., Leleka, S. V., Pulinets, I. V., Lazaryev, T. V. (2012). Sposib vypalyuvannya vuhletsevykh vyrobiv v bahatokamerniy kiltseviy pechi. UA patent No. 69,350. Kiev.
  13. Shulepov, S. V. (1972). Fizika uglegrafitovyh materialov. Moscow, USSR: Metallurgija, 256.
  14. Borisov, Ju. M., Lipatov, D. N., Zorin, Ju. N. (1985). Jelektrotehnika Uchebnik dlja vuzov. 2th edition. Moscow, USSR: Jenergoatomizdat, 552.
  15. Kalechica, I. V. (Ed.) (1980). Himicheskie veshhestva iz uglja. Moscow, USSR: Himija, 616.
  16. Bogdanov, N. N. (1947). Polukoksovanie i gazifikacija koksa. Moscow, USSR: Gosjenergoizdat, 268.

Published

2015-06-17

How to Cite

Панов, Е. Н., Карвацкий, А. Я., Лелека, С. В., Лазарев, Т. В., Педченко, А. Ю., & Швачко, Д. Г. (2015). Method for determining the bulk temperature of the acheson graphitization furnace core. Eastern-European Journal of Enterprise Technologies, 3(5(75), 41–46. https://doi.org/10.15587/1729-4061.2015.43721

Issue

Section

Applied physics