Methods to predict liquid passage through porous materials

Authors

  • Ганна Володимирівна Щуцька Higher state educational establishment “Kyiv college of light industry” I. Kudri Str. 29, Kyiv, Ukraine, 01042, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2015.44255

Keywords:

liquid passage, porous material, macroexperiment, liquid accumulation, regression mathematical model

Abstract

Based on data interpretation of macroexperiments on the liquid passage, a simplified model of the liquid passage through porous materials at the elementary level was built. On the grounds of regression analysis, the basic parameters characterizing the dynamics of the liquid passage through the porous materials were found. The dependence includes clear experimental data that can be obtained in macroexperiments and involves finding the liquid concentration in any part of the material. This model allows to predict the state of the porous material when it is moistened, determine the time of the liquid passage through the material and time of a total liquid accumulation. The data allow to predict the liquid passage through multilayer materials. The research results allow to define liquid absorption parameters of the material based on macroexperiments, boundary moisture content in the inner layer; time of the liquid passage through the material; determine the passage depth, time of comfortable work. The results allow to determine the hygienic properties of materials that include the ability to regulate the liquid passage.

Author Biography

Ганна Володимирівна Щуцька, Higher state educational establishment “Kyiv college of light industry” I. Kudri Str. 29, Kyiv, Ukraine, 01042

Candidate of techical Science, professor

References

  1. Fangueiro, S., Cunha, R. M., Soutinho, H. F. (2010). Moisture Management Performance of Multifunctional Yarns Based on Wool Fibers. Advanced Materials Research, 123-125, 1247–1250. doi: 10.4028/www.scientific.net/amr.123-125.1247
  2. Johnson, N. G., Wood, E. J., Ingham, P. E., MeNeil, S. J., MeFarlane, I. D. (2003). Wool as a technical fibre. Part 3. Cambriage UK: Text Inst., 94.
  3. Kovtun, S., Vlasenko, V., Bereznenko, S., Suprun, N. (2006). Doslіdzhennya zdatnostі bagatosharovih textile materіalіv to zmochuvannya. Problems of Textile and Light Industry of Ukraine, 2, 92–95.
  4. Norman, R. S., Kassinger, H. (1997). Water transport mechanisms in textile material. Part II: Capillary-type penetration in yarns and fabrics. Textile Research Journal, 8, 132–134
  5. Crow, R. M., Osczevski, R. J. (1998). The Interaction of Water with Fabrics. Textile Research Journal, 68 (4), 280–288. doi: 10.1177/004051759806800406
  6. Yoneda, M., Mizuno, Y., Yoneda, J. (1993). Measurment of water absorption perpendicular to fabric plane in two- and multi-layered fabric systems. Textile Research Journal, 29 (12), 940–949.
  7. Kovtun, S., Riabchykov, N. (2008). Kіnetika processes vodovbirannya bagatosharovimi textile kompozitsіynimi materіalami. Mathematical model protsesu vodovbirannya. Notification 2. Kiev The natsіonalny unіversitet tehnologіy that design, 6, 82–88.
  8. Kovtun, S. (2008). Kіnetika processes vodovbirannya bagatosharovimi textile kompozitsіynimi materіalami. Kiev The natsіonalny unіversitet tehnologіy that design. News KNUTD, 5, 86–90.
  9. Suprun, N. P. (2001). Modeling of masstransfere processes in textiles. Vlakna a textil, 2, 125.
  10. Riabchykov, N., Vlasenko, V., Kovtun, S. (2009). Nestatsіonarna model vodovbirannya textile materіalami on tovschinі. News skhіdnoukraїnskogo natsіonalnogo unіversitetu іmenі Volodymyr Dahl, 2 (132), 325–334.
  11. Riabchykov, N., Vlasenko, V., Arabuli, S. (2011). Linear mathematical model of water uptake perpendicular to fabric plane. Vlakna a textil, 2 (18), 24–29.

Published

2015-06-24

How to Cite

Щуцька, Г. В. (2015). Methods to predict liquid passage through porous materials. Eastern-European Journal of Enterprise Technologies, 3(11(75), 19–23. https://doi.org/10.15587/1729-4061.2015.44255

Issue

Section

Materials Science