Shock wave-boundary layer interactions at the supersonic flow around three-dimensional configurations

Authors

  • Євген Миколайович Панов National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremogy ave., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-4885-2777
  • Антон Янович Карвацький National Technical University of Ukraine "Kyiv Polytechnic Institute" 37 Peremogy ave., Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0003-2421-4700
  • Сергій Володимирович Лелека National Technical University of Ukraine "Kyiv Polytechnic Institute" 37 Peremogy ave., Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-4372-9454
  • Тарас Валерійович Лазарєв National Technical University of Ukraine "Kyiv Polytechnic Institute" 37 Peremogy ave., Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-8260-1683
  • Анатолій Юрійович Педченко National Technical University of Ukraine "Kyiv Polytechnic Institute" 37 Peremogy ave., Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-5065-5003

DOI:

https://doi.org/10.15587/1729-4061.2015.50911

Keywords:

supersonic flow, boundary layer, shock wave, interference of configurations, numerical analysis

Abstract

The study suggests that the problems of interactions of turbulent flows at the supersonic flow around aircraft elements be solved by numerical analysis methods aided by a mathematical model that is based on the system of the Reynolds-averaged Navier-Stokes equations. The system includes the k-ω SST turbulence model for viscous compressible medium (with two scalar equations of turbulent kinetic energy and relative velocity of its dissipation with the modification that takes into account the transfer of shear stress). The paper presents applied testing and verification of the model along with examples of the problems on supersonic flows around a flat wall and a sphenoid superstructure as well as a perpendicular gas stream. We have identified physical characteristics of interactions between the condensation wave and the boundary turbulent layer, which manifest themselves in the formation of a complex structure of disconnecting and connecting zones of a boundary turbulent layer, which are characterized by respective lines of separation and joining on the wrap surface. The solutions adequately reflect the pattern of the supersonic flow of a compressible medium, condensation waves and vortex zones that are commonly observed during field studies. The comparative analysis of the results of numerical modeling and experimental data confirms the applicability of the mathematical model for complex tasks of the supersonic gas-dynamic state.

Author Biographies

Євген Миколайович Панов, National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremogy ave., 37, Kyiv, Ukraine, 03056

Doctor of Engineering, professor

The chemical, polymer and silicate machine engineering department

Антон Янович Карвацький, National Technical University of Ukraine "Kyiv Polytechnic Institute" 37 Peremogy ave., Kyiv, Ukraine, 03056

Doctor of Engineering, Professor

Chemical, polymer and silicate machine engineering department

Сергій Володимирович Лелека, National Technical University of Ukraine "Kyiv Polytechnic Institute" 37 Peremogy ave., Kyiv, Ukraine, 03056

PhD, postdoctoral research fellow

Research center «Resource-saving technologies»

Тарас Валерійович Лазарєв, National Technical University of Ukraine "Kyiv Polytechnic Institute" 37 Peremogy ave., Kyiv, Ukraine, 03056

PhD, postdoctoral research fellow

Chemical, polymer and silicate machine engineering department

Анатолій Юрійович Педченко, National Technical University of Ukraine "Kyiv Polytechnic Institute" 37 Peremogy ave., Kyiv, Ukraine, 03056

Postgraduate student

Chemical, polymer and silicate machine engineering department

References

  1. Babinsky, H. (2011). Shock Wave–Boundary-Layer Interactions. New York: Cambridge University Press, 461.
  2. Zheltovodov, A. A. (2012). Zakonomernosti razvitiya i vozmozhnosti chislennogo modelirovaniya sverhzvukovyih turbulentnyiy otryivnyih techeniy. Aviatsionno-kosmicheskaya tehnika i tehnologiya, 5, 95–107.
  3. Zheltovodov, A. A. (1996). Shock waves/turbulent boundary-layer interactions: Fundamental studies and applications. AIAA, Fluid Dynamics Conferences. doi: 10.2514/6.1996-1977
  4. Zheltovodov, A. A. (1987). Osobennosti razvitiya otryivnyih techeniy v uglah szhatiya za volnami razrezheniya. Novosibirsk ITPM, 47.
  5. Zheltovodov, А. (1982). Regimes and properties of three-dimensional separation flows initiated by skewed compression shocks. J. Applied of Mechanics and Technical Physics, 23(3), 413–418. doi: 10.1007/bf00910085
  6. Schülein, E., Zheltovodov, A. A. (2001). Documentation of Experimental Data for Hypersonic 3-D Shock Waves/Turbulent Boundary Layer Interaction Flows. DLR, German Aerospace Center.
  7. Schülein, E. (2006). Skin Friction and Heat Flux Measurements in Shock/Boundary Layer Interaction Flows. AIAA Journal, 44(8), 1732-1741. doi: 10.2514/1.15110
  8. Panaras, A. G. (2004). Calculation of Flows Characterized by Extensive Crossflow Separation. AIAA Journal, 42 (12), 2474–2475. doi: 10.2514/1.12488
  9. Edwards, J. R., Chandra, S. (1996). Comparison of Eddy Viscosity-Transport Turbulence Models for Three-Dimensional Shock-Separated Flowfields. AIAA Journal, 34 (4), 756–763. doi: 10.2514/3.13137
  10. Fang, J., Yao, Y., Zheltovodov, A., Lu, L. (2015). Large-Eddy Simulation of a Three-Dimensional Hypersonic Shock Wave Turbulent Boundary Layer Interaction of a Single-Fin. 53rd AIAA Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics. doi: 10.2514/6.2015-1062
  11. Spaid, F. W., Zukoski, E. E. (1968). A Study of the Interaction of Gaseous Jets from Transverse lots with Supersonic External Flows. AIAA Journal, 6 (2), 205–212. doi: 10.2514/3.4479
  12. Zukoski, E. E., Spaid, F. W. (1964). Secondary Injection of Gases into a Supersonic Flow. AIAA Journal, 2 (10), 1689–1696. doi: 10.2514/3.2653
  13. Chenault, C. F., Beran, P. S., Bowersox, R. D. W. (1999). Numerical Investigation of Supersonic Injection Using a Reynolds-Stress Turbulence Model. AIAA Journal, 37 (10), 1257–1269. doi: 10.2514/2.594
  14. Santiago, J. G., Dutton, J. C. (1997). Crossflow Vortices of a Jet Injected into a Supersonic Crossflow. AIAA Journal, 35 (5), 915–917. doi: 10.2514/2.7468
  15. Glagolev, A., Zubkov, A., Panov, Y. (1967). Supersonic flow past a gas jet obstacle emerging from a plate. Fluid Dynamics, 2 (3), 60–64. doi: 10.1007/bf01027359
  16. Erdem, E., Kontis, K. (2010). Experimental and numerical predictions for transverse injection flows. Journal of Shock Waves, 20 (2), 103–118. doi: 10.1007/s00193-010-0247-1
  17. Erdem, E., Kontis, K., Saravanan, S. (2014). Penetration Characteristics of Air, Carbon Dioxide and Helium Transverse Sonic Jets in Mach 5 Cross Flow. Sensors, 14 (12), 23462–23489 doi: 10.3390/s141223462
  18. Dhinagaran, R., Bose, T. K. (1998). Numerical Simulation of Two-Dimensional Transverse Gas Injection into Supersonic External Flows. AIAA Journal, 36 (3), 486–488. doi: 10.2514/2.393
  19. Srinivasan, R., Bowersox, R. D. W. (2005). Characterization of Flow Structures and Turbulence in Hypersonic Jet Interaction Flowfields. 43rd AIAA Aerospace Sciences Meeting and Exhibit. doi: 10.2514/6.2005-895
  20. Rizzetta, D. P. (1992). Numerical Simulation of Slot Injection into a Turbulent Supersonic Stream. AIAA Journal, 30 (10), 2434–2439. doi: 10.2514/3.11244
  21. Kawai, S., Lele, S. K. (2010). Large-eddy simulation of jet mixing in supersonic crossflows. AIAA Journal, 48 (9), 2063–2083. doi: 10.2514/1.J050282
  22. Won, S., Jeung, I., Choi, J. Y. (2006). DES Study of Transverse Jet Injection into Supersonic Cross Flows. 44rd AIAA Aerospace Sciences Meeting and Exhibit. doi: 10.2514/6.2006-1227
  23. Sriram, A. T. Mathew, J. (2008). Numerical simulation of transverse injection of circular jets into turbulent supersonic streams. Journal of Propulsion and Power, 24 (1), 45–54. doi: 10.2514/1.26884
  24. Poinsot, T. (2005) Theoretical and numerical combustion. Philadelphia : Edwards, 522.
  25. Jones, W. P. (1972). The prediction of laminarization with a 2-equation model of turbulence. International Journal of Heat and Mass Transfer, 15 (2), 301–314. doi: 10.1016/0017-9310(72)90076-2
  26. Wilcox, D. C. (1993). Turbulence Modeling for CFD. California : DCW Industries, Inc, 460.
  27. Menter, F. R. (1994). Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal, 32 (8), 1598–1605. doi: 10.2514/3.12149
  28. Panaras, A. G. (2015) Turbulence Modeling of Flows with Extensive Crossflow Separation. Aerospace, 2 (3), 461–481. doi: 10.3390/aerospace2030461
  29. Menter, F. (2003). Ten Years of Experience with the SST Turbulence Model. Turbulence, Heat and Mass Transfer, 4, 625–632.
  30. Karvatskii, A. Ya. (2015). Suchasnyy stan problemy teoretychnoho doslidzhennya nadzvukovoho obtikannya til za riznykh konfihuratsiy. Khimichna inzheneriya, ekolohiya ta resursozberezhennya, 1, 5–12.
  31. OpenFOAM. The Open Source CFD Toolbox. http://www.openfoam.org
  32. Panov, Ye. M., Karvatskii, A. Ya., Pedchenko, A. Yu., Pulinets, I. V., Lazariev, T. V. (2015). Chyslove modelyuvannya obtikannya profilyu kryla nadzvukovym potokom z vykorystannyam prohramnoho kodu OpenFOAM. Aviatsiyno-kosmichna tekhnika i tekhnolohiya, 2, 69–78.

Published

2015-10-23

How to Cite

Панов, Є. М., Карвацький, А. Я., Лелека, С. В., Лазарєв, Т. В., & Педченко, А. Ю. (2015). Shock wave-boundary layer interactions at the supersonic flow around three-dimensional configurations. Eastern-European Journal of Enterprise Technologies, 5(4(77), 4–11. https://doi.org/10.15587/1729-4061.2015.50911

Issue

Section

Mathematics and Cybernetics - applied aspects