Research of high-strength cement compositions modified by complex organic-silica additives

Authors

  • Катерина Костянтинівна Пушкарьова Kyiv National University of Construction and Architecture Povitroflotskyi pr. 31, Kyiv, Ukraine, 03680, Ukraine
  • Костянтин Олександрович Каверин Kyiv National University of Civil Engineering & Architecture 31 Vozduhoflotsky ave., Kyiv, Ukraine, 03680, Ukraine https://orcid.org/0000-0001-9086-5953
  • Дмитро Олексійович Калантаєвський Kyiv National University of Civil Engineering & Architecture 31 Vozduhoflotsky ave., Kyiv, Ukraine, 03680, Ukraine https://orcid.org/0000-0002-8462-8000

DOI:

https://doi.org/10.15587/1729-4061.2015.51836

Keywords:

complex organic-silica additive, silica fume, polycarboxylate superplasticizer, low-basic calcium hydrosilicates, hydrogarnets

Abstract

Forming the optimal structure of the cement stone using various chemical modifiers is one of the most promising areas of technological progress in concrete technology. In most cases, these modifiers are complex additives that may include various plasticizing additives and active mineral substances, such as fly ash, silica fume, metakaolin.

At the same time, the problem of silica fume compatibility with various types of superplasticizers, used in modern binding systems is partially disclosed. This necessitates more research in this area.

In the paper, the physical and mechanical properties of cement compositions, modified by complex organic-silica additives were investigated, and it was shown that the complex additive efficiency reaches 100% when compared with pure Portland cement and 30% when compared with the cement systems, modified by superplasticizers only. It was found that the complex organic-silica additive, represented by polycarboxylate superplasticizer and silica fume of different nature, creates conditions for forming the low-basic hydrosilicates, plazolite and hydrogarnets, which provide a high-strength dense structure of cement stone, which were used to obtain high-strength lightweight ceramsite concrete of classes С20/25…С32/40 (В25…В40) with an average density of 1600...1800 kg/m3, while using unmodified Portland cement allows to obtain ceramsite concrete of classes С10/12,5…С20/25 (В12,5…В25) with the same average density.

Author Biographies

Катерина Костянтинівна Пушкарьова, Kyiv National University of Construction and Architecture Povitroflotskyi pr. 31, Kyiv, Ukraine, 03680

Professor

Head on the department of building materials

Костянтин Олександрович Каверин, Kyiv National University of Civil Engineering & Architecture 31 Vozduhoflotsky ave., Kyiv, Ukraine, 03680

Postgraduate student

Department of building materials 

Дмитро Олексійович Калантаєвський, Kyiv National University of Civil Engineering & Architecture 31 Vozduhoflotsky ave., Kyiv, Ukraine, 03680

Department of building materials 

References

  1. Batrakov, V. G. (1998). Modifitsyrovanye betony. Teoria i praktika. 2nd edition. Moscow, 768.
  2. Bazhenov, Yu. M., Demianova, V. S., Kalashnikov, V. I. (2006). Modifitsyrovanye vysokokachestvenye betony. Moscow: Izdatelstvo ABC, 380.
  3. Dvorkin, L. Y., Vyrovoi, V. N. et. al. (1991). Cementnye betony s mineralnymi napolniteliami. Kyiv, Budіvelnik, 136.
  4. Rixom, W. R., Mailvaganam, N. P.(1998). Chemical admixtures for concrete. E & F N Spon, London, UK, 516.
  5. Malhotra, V. M.; Mehta, P. K. (Ed.) (1997). Innovate applications of superplasticizers in concrete. Review . Mario Collepardi Symposium on Advances in Concrete Science and Technology. Rome, 271–314.
  6. Kirsanova, A. A., Kramar, L. Ya., Chernih, T. N., Arginbaev, T. M., Stafeeva, Z. V. (2013). Kompleksnii modifikator s metakaolinom dlya polucheniya cementnih kompozitov s visokoi rannei prochnostyu i stabilnostyu. Vestnik Yujno Uralskogo gosudarstvennogo universiteta. Seriya: Stroitelstvo i arhitektura, 1, 49–56.
  7. Plank, J., Hirsch, C. (2007). Impact of zeta potential of early cement hydration phases on superplasticizer adsorption. Cement and Concrete Research, 37 (4), 537–542. doi: 10.1016/j.cemconres.2007.01.007
  8. Collepardi, M. (2003). Advances in superplasticizing admixtures. Nelu spiratos symposium on superplasticizers, Bucharest, Romania, 13–36.
  9. Spiratos, N., Page, М., Mailvaganam, N., Malhotra, V. M., Jolicoeur, С. (2003). Superplaticizers for concrete: fundamentals, technology, and practice. Supplementary Cementing Materials for Sustainable Development Inc. Ottawa, Canada, K1Y 2B3.
  10. Tseng, Y. C., Wu, W. L., Huang, H. L., Wang, C. T., Hsu, K. C.; V. M. Malhotra (Ed.) (2000). New carboxylic acid-based superplasticizer for high-performance concrete. Proceedings of the 6-th CAMET. ACI Conference on superplasticizers in concrete. Nice, France, АСІ SP-195, 401–412.
  11. Tsukada, К., Ishimori, М., Kinoshita, М.; V. M. Malhotra (Ed.) (2003). Performance of an advanced polycarboxylate-based powder superplasticizer. Proceedings of the 7-th CANMET. ACI Int. Conference on superplasticizers and other chemical admixtures in concrete. Berlin, Germany, ACI SP-217-26, 393–408.
  12. Monasterio, M., Gaitero, J. J., Erkizia, E., Guerrero Bustos, A. M., Miccio, L. A., Dolado, J. S., Cerveny, S. (2015). Effect of addition of silica- and amine functionalized silica-nanoparticles on the microstructure of calcium silicate hydrate (C–S–H) gel. Journal of Colloid and Interface Science, 450, 109–118. doi: 10.1016/j.jcis.2015.02.066
  13. Kar, A., Ray, I., Unnikrishnan, A., Davalos, J. F. (2012). Estimation of C–S-H and calcium hydroxide for cement pastes containing slag and silica fume. Construction and Building Materials, 30, 505–515. doi: 10.1016/j.conbuildmat.2011.12.029
  14. Volzhenskii, A. V., Burov, Yu. S., Kolokolnikov, V. S. (1973). Mineralnye viazhushhie veshhestva. Moscow: Stroiizdat, 480.
  15. Pashhenko, O. O., Serbіn, V. P., Starchevska, O. O. (1995). Viazhuchі materіali. Kyiv: Vishha shkola, 416.
  16. Timashev, V. V. (1986). Izbrannye trudy. Sintez i gidratacija viazhushhih materialov. Moscow: Nauka, 424.
  17. Gorshkov, B. C., Timashev, V. V., Savelev, V. G. (1981). Metody fiziko-himicheskogo analiza viazhushhih veshhestv. Moscow: Vyshaja shkola, 335.
  18. Ramachandran, V. S.; V. B. Ratinova (Ed.) (1977). Primenenie differencialno-termicheskogo analiza v khimii cementov. Moscow: Stroiizdat, 408.
  19. Larionova, Z. M., Nikitina, L. V., Garazhin, V. R. (1977). Fazovyi sostav, mikrostruktura i prochnost cementnogo kamnia i betona. Moscow: Stroiizdat, 262.
  20. Rid, S. (1977). Elektronno-zondovyi mikroanaliz. Moscow: Mir, 423.
  21. Pushkarova, K. K., Kaverin, K. O. (2014). Doslіdzhennia vplivu organo-kremnezemistih dobavok na mіcnіst cementnih kompozicіi. Vіsnik Odeskoi Derzhavnoї akademії budіvnictva ta arhіtekturi, 57, 371–379.
  22. Pushkarova, K. K., Kaverin, K. O., Dmitrov, M. S. (2014). Doslіdzhennia procesіv strukturoutvorennia cementnih kompozicіi, modifіkovanih organo-kremnezemistimy dobavkami. Vіsnik Odeskoi Derzhavnoї akademіi budіvnictva ta arhіtekturi, 56, 201–208.
  23. Pushkarova, K. K., Gonchar, O. A., Kaverin, K. O. (2014). Osoblivostі modifіkacіi cementnoi matricі dlia otrimannia visokomіcnih legkih keramzitobetonіv. Budіvelnі materіali, viroby ta sanіtarna tehnіka, 52, 43–48.
  24. Index (inorganic) to the Powder Difraction File (1969). ASTM Publication PD IS 19i. American Society for Testingand Materials, York, Pensylvania, 253.
  25. Butt, Yu. M., Timashev, V. V. (1973). Praktikum po khimicheskoi tehnologii viazhushhih materialov. Moscow: Vysshaia shkola, 504.
  26. Shtark, I., Viht, B.; P. Krivenko (Ed.) (2008). Cement i izvest. Kyiv, 480.
  27. Trudy VI Mezhdunarodnogo kogressa po khimii cementa. Vol. 2. Book 1 (1975). Moscow: Stroiizdat.

Published

2015-10-24

How to Cite

Пушкарьова, К. К., Каверин, К. О., & Калантаєвський, Д. О. (2015). Research of high-strength cement compositions modified by complex organic-silica additives. Eastern-European Journal of Enterprise Technologies, 5(5(77), 42–51. https://doi.org/10.15587/1729-4061.2015.51836