A vibration analysis used in the methods of detecting unsteady operational modes of axial compressors

Authors

  • Валентин Семенович Чигрин National Aerospace university “Kharkov Aviation institute“ 17 Chkalov str., Kharkiv, Ukraine, 61070, Ukraine https://orcid.org/0000-0003-1837-0811
  • Сергей Валерьевич Епифанов National Aerospace university “Kharkov Aviation institute“ 17 Chkalov str., Kharkiv, Ukraine, 61070, Ukraine https://orcid.org/0000-0003-1161-6866
  • Фаррох Мохаммадсадеги National Aerospace university “Kharkov Aviation institute“ 17 Chkalov str., Kharkiv, Ukraine, 61070, Ukraine https://orcid.org/0000-0003-2810-3901

DOI:

https://doi.org/10.15587/1729-4061.2015.56245

Keywords:

axial compressor, rotating stall, surge, vibration signal, median filtering, band-pass fіlter

Abstract

We have grounded the necessity to devise a system of a compressor surge prevention at the stage of its inception and analysed possible informative parameters characterizing an unsteady flow in a compressor and the possibility of a surge. We have presented the results of numerical simulation of the flow and dynamics of the loss of gas-dynamic stability in the inter-blade channel of the axial compressor impeller.
It has been determined that the process of the loss of dynamic stability begins with the appearance of the initial vortex zone on the back of the blade profile. We have carried out an experimental research with measuring the pressure pulsation and vibration, revealed that the levels of pressure fluctuations on the impeller with a frequency of rotor blades can signal of the compressor stall, and pointed out the problems of technical use of this criterion. We have experimentally researched the connection of unstable flows in the flow part and vibration levels in the compressor housing. It is proved that the harmonics of the rotating stall that is determined by the level of vibrations is stable and significantly stands out from the background noise, so it can be used to diagnose the rotating stall as a signal of the surge.
The paper contains an experimentally verified dependence for determining the frequency of the rotating stall. We have studied the possibility of using the median and band filters in processing the vibrations and suggested an algorithm for identifying a pre-surge compressor state by the rate of vibrations in the compressor housing, which is aimed at devising of automatic warning systems for the surge prevention at the stage of its inception.
Devising a system of an anti-surge protection with the use of the vibration signal would increase the reliability of its work and raise the operational reliability of a gas turbine engine by eliminating false positives.

Author Biographies

Валентин Семенович Чигрин, National Aerospace university “Kharkov Aviation institute“ 17 Chkalov str., Kharkiv, Ukraine, 61070

Associate professor, Candidate of technical science

Engine Design department

Сергей Валерьевич Епифанов, National Aerospace university “Kharkov Aviation institute“ 17 Chkalov str., Kharkiv, Ukraine, 61070

Professor, Doctor of technical sciences

Honored worker of science ofUkraine, Head of the Engine Design department, 

Фаррох Мохаммадсадеги, National Aerospace university “Kharkov Aviation institute“ 17 Chkalov str., Kharkiv, Ukraine, 61070

Postgraduate student

Engine Design department

References

  1. Avgustinovich, V. G., Shmotin, Yu. N., Sipatov, A. P. et. al. (2005). Chislennoe modelirovanie nestatsionarnyih yavleniy v gazoturbinnyih dvigatelyah. Moscow: Mashinostroenie, 536.
  2. Anurov, Yu. M., Koval, V. A., Mihaylova, V. E. et. al. (2013). Osobennosti rascheta granitsyi sryiva osevyih kompressorov GTD. Gazoturbinnyie tehnologii, 9, 28–31.
  3. Dzenzerskiy, V. A., Prihodko, A. A., Redchits, D. A., Hachapuridze, N. M. (2009). Modelirovanie nestatsionarnyih turbulentnyih techeniy pri obtekanii podvizhnyih tel slozhnoy geometrii na osnovanii uravneniy Nave-Stoksa. Visnyk Harkivs'kogo nacional'nogo universytetu, 847, 150–166.
  4. Koval, V. A., Kovaleva, E. A. (2010). Forecasting of modes of rotating failure in a step of the axial compressor taking into account formation of profile and face interfaces. Eastern-European Journal of Eenterprise Technologies, 3/3 (45), 4–8. Available at: http://journals.uran.ua/eejet/article/view/2786/2592
  5. Kolesinskiy, L. D. (2008). Issledovanie protsessov razvitiya vraschayuschegosya sryi-va v osevom kompressore posle narusheniya gazodinamicheskoy ustoychivosti. Uchenyie zapiski TsAGI, 39 (1-2), 92–98.
  6. Mathioudakis, K., Breugelmans, F. A. E. (1988). Three-dimensional flow in deep rotating stall cells of an axial compressor. Journal of Propulsion and Power, 4 (3), 263–269. doi: 10.2514/3.23058
  7. Kolesinskiy, L. D., Makasheva, O. V. (2008). Analiz protekaniya nestatsionarnyih yavleniy v mnogo-stupenchatom osevom kompressore, rabotayuschem v sisteme stenda, pri pompazhe. Uchenyie zapiski TsAGI, 39 (4), 46–59.
  8. Baturin, O. V., Kolmakova, D. A., Matveev, V. N. (2013). Issledovanie rabochego protsessa tsentrobezhnogo kompres-sora s pomoschyu chislennyih metodov gazovoy dinamiki. Samara: SGAU, 160.
  9. Langtry, R., Menter, F. (2006). Overview of Industrial Transition Modelling in CFX. Technical Report ANSYS.Germany, Otterfing, 172.
  10. Frik, P. G. (2003). Turbulentnost: podhodyi i modeli. Moscow – Izhevsk: Institut kompyuternyih issledovaniy, 292.
  11. Alvelius, K., Johansson, A. V. (1999). Direct numerical imulation of rotating channel flow at various Reynolds numbers and rotation number.Stockholm,Sweden, 43.
  12. Anderson, V., Tannehilb, Dzh., Pletcher, R. (1990). Vychislitelnaya gidromehanika i teploobmen. Vol 1-2. Moscow: Mir, 384, 337.
  13. Makarov, V. E., Andreev, S. P., Shorstov, V. A., Buyukli, T. V. (2010). Aerouprugost lopatochnyih mashin: 3D modelirovanie vyinuzhdennyih kolebaniy lopatok ventlyatora i raschetnaya otsenka usloviy voz-niknoveniya avtokolebaniy v kvazi-SD postanovke. Sarov, RFYaYaTs-VNIIEF, 92.
  14. Gorla, R. S. R., Pai, S. S., Blankson, I., Tadepalli, S. C., Reddy Gorla, S. (2005). Unsteady Fluid Structure Interaction in a Turbine Blade. Vol. 4. Turbo Expo 2005. USA. doi: 10.1115/gt2005-68157
  15. Zhang, M., Hou, A., Zhou, S., Yang, X. (2012). Analysis on Flutter Characteristics of Transonic Compressor Blade Row by a Fluid-Structure Coupled Method. Vol. 7. Denmark. doi: 10.1115/gt2012-69439
  16. Doi, H., Alonso, J. J. (2002). Fluid/Structure Coupled Aeroelastic Computations for Transonic Flows in Turbomachinery. Vol. 4. Turbo Expo 2002. Netherlands. doi: 10.1115/gt2002-30313
  17. Luengo, A. S., Vogt, D. M., Schmitt, S., Fransson, T. H. (2012). Validation of Linearized Navier-Stokes Based Flutter Prediction Tool: Part 2 – Quantification of the Prediction Accuracy on a Turbine Test Case. Vol. 7. Denmark. doi: 10.1115/gt2012-69682
  18. McBean, I., Liu, F., Hourigan, K., Thompson, M. (2002). Simulations of Aeroelasticity in an Annular Cascade Using a Parallel 3-Dimensional Navier-Stokes Solver. Vol. 5. Turbo Expo 2002. Netherlands. doi: 10.1115/gt2002-30366
  19. Spalart, P., Allmaras, S. (1992). A one-equation turbulence model for aerodynamic flows. USA. doi: 10.2514/6.1992-439
  20. Redchits, A. A. (2009). Matematicheskoe modelirovanie otryivnyih techeniy na osnove nestatsionarnyih uravneniy Nave-Stoksa. Nauchnyie vedomosti BelGU, 13, 118–146.
  21. Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32 (8), 1598–1605. doi: 10.2514/3.12149
  22. Micallef, D., Witteck, D., Wiedermann, A., Kluß, D., Mailach, R. (2012). Three-Dimensional Viscous Flutter Analyses of a Turbine Cascade in Subsonic and Transonic Flows. Vol. 7. Turbo Expo 2012. Denmark. doi: 10.1115/gt2012-68396
  23. Krivosheev,I.A., Chechulin, A. Yu., Hohlova, Yu. A. (2011). Vybor modeli turbulentnosti pri raschete poter davleniya v protochnoy chasti GTD s ispolzovaniem programmnogo kompleksa ANSYS CFX. Vestnik UGATU, 15/2 (42), 68–73.
  24. Vozhdaev, V. V., Teperin, L. L. (2014). Metodika rascheta aerodinamicheskih harakteristik vozdushnogo vinta pri vychisleniyah na osnove resheniy uravneniy Nave-Stoksa. Polet, 5, 28–36.
  25. Vozhdaev, V. V. (2011). Vliyanie modeli turbulentnosti na tochnost rascheta aerodinamicheskih harakteristik mehanizirovannogo kryla. Tehnika vozdushnogo flota, 3, 16–22.
  26. Yun, A. A. (2009). Teoriya i praktika modelirovaniya turbulentnyh techeniy. Moscow, 273.
  27. Elektronnyiy zhurnal dlya polzovateley CAE-sistemoy ANSYS. Available at: http://www.ansyssolutions.ru
  28. Varzhitskiy, L. A., Kiselev, Yu. V., Sidorenko, M. K. (1988). Issledovanie spektralnoy modeli pulsatsiy davleniya v osevom kompressore dlya diagnostiki gazodinamicheskoy neustoychivosti. Vibratsionnaya prochnost i nadezhnost dvigateley i sistem letatelnyih apparatov. Kuybyshev: KUAI, 20–24.
  29. Chygryn, V. S., Suhoviy, S. I. (2012). Vibroakustyka i vibrodiagnostyka aviatsyinyh dvyguniv. Kharkiv: Nats. aerokosm. un-t «HAI», 264.
  30. Kolesinskiy, L. D., Makasheva, O. V. (2010). Opredelenie vraschayuschegosya sryiva v osevom mnogostupenchatom kompressore GTD. Polet, 3, 36–41.
  31. Kiprich, T. V., Haritonov, V. N., Dubrovin, V.I.(2008). Issledovanie metodov i modeley obnaruzheniya pompazhnyh yavleniy v sisteme avtomaticheskogo upravleniya GTD. Aviatsionno-kosmicheskaya tehnika i tehnologiya, 9, 206–210.
  32. Mohammadsadegi, F. (2014). Modelirovanie sryvnyh i neustoychivyh rezhimov rabotyi stupeni osevogo kompressora dlya diagnostiki ego predpompazhnogo sostoyaniya. Vestnik dvigatelestroeniya. Nauchno-tehnicheskiy zhurnal. 2, 80–83.
  33. Mihaylov, A. L., Posadova, O. L. (2008). Diagnostika avtokolebaniy rabochego kolesa kompressora malorazmernogo GTD. Kontrol. Diagnostika, 7, 47–50.
  34. Shorin, V. P., Shahmatov, E. V., Gimadiev, A. G. et. al (2007). Akusticheskie metodyi i sredstva izmereniya pulsatsiy davleniya. Samara: SGAU, 132.
  35. Bolshakov,I.A., Rakoshits, V. S. (1978). Prikladnaya teoriya sluchaynyih potokov. Moscow: Sov. radio, 248.
  36. Bardin, B. V. (2011). Bystryi algoritm mediannoy filtratsii. Nauchnoe priborostroenie, 21 (3), 135–139.
  37. Burau, N. I., Yatsko, L. L., Pavlovskiy, O. M., Sopilka, Yu. V. (2012). Metody tsifrovoy obrobky sygnaliv dlya vibratsiynoy diagnostyky dvyguniv. Kyiv: NAU, 152.
  38. Ayficher, E. S., Dzhervis, B. U. (2008). Tsifrovaya obrabotka signalov: prakticheskiy podhod. Moscow: Izdatelskiy dom «Vilyams», 992.

Published

2015-12-25

How to Cite

Чигрин, В. С., Епифанов, С. В., & Мохаммадсадеги, Ф. (2015). A vibration analysis used in the methods of detecting unsteady operational modes of axial compressors. Eastern-European Journal of Enterprise Technologies, 6(7(78), 23–34. https://doi.org/10.15587/1729-4061.2015.56245

Issue

Section

Applied mechanics